## Math 2250-4

Week 4 concepts and homework, due February 1.

Recall that problems which are not underlined are good for seeing if you can work with the underlying concepts; that the underlined problems are to be handed in; and that the Friday quiz will be drawn from all of these concepts and from these or related problems. You will also have a Maple/Matlab project due on Monday February 4

2.2: equilibria, stability, phase diagram analysis: **w4.1** This problem uses the differential equation from 2.2.14,

$$x'(t) = x(x^2 - 4)$$

**w4.1a)** Find the equilbrium solutions, draw the phase diagram, and classify each equilbrium point as stable or unstable.

<u>w4.1b</u>) Use dfield to draw the slope field; graph the equilbrium solutions as well as representative solutions with initial values between each of those constant function solutions. Note how these solutions are consistent with the phase diagram in  $\underline{a}$ .

**w4.1c**) "Solve" the DE via separation of variables. You will need to use partial fractions in the *x*-variable. The resulting implicit equation relating *x* and *t* isn't solvable for *x* as a function of *t*, but it is easy to solve for *t* as a function of *x*. Explain how this formula t = t(x) is related to the dfield picture in **b**, interpreted as looking at the solution curves as "sideways" graphs of *t* as a function of *x*, on the *x*-intervals between the equilibrium values.

2.2.23 (you can do this problem entirely with phase diagram analysis).

2.3: improved velocity-acceleration models:
2, 3, 9, 10, 12: constant, or constant plus linear drag forcing
13, 14, 17, 18: quadratic drag
25, 26: escape velocity

2.4-2.6: numerical methods for approximating solutions to first order initial value problems. Your second Maple/Matlab project addresses these sections too.

2.4: <u>4</u>: Euler's method

2.5: <u>4</u>: improved Euler

2.6: <u>4</u>: Runge-Kutta

<u>w4.2</u>) Runge-Kutta is based on Simpson's rule for numerical integration. Simpson's rule is based on the fact that for a subinterval of length 2 h, which by translation we may assume is the interval  $-h \le x \le h$ , the parabola y = p(x) which passes through the points  $(-h, y_0)$ ,  $(0, y_1)$ ,  $(h, y_2)$  has integral

$$\int_{-h}^{h} p(x) \, \mathrm{d}x = \frac{2h}{6} \cdot \left(y_0 + 4y_1 + y_2\right). \tag{1}$$

If we write the quadratic interpolant function p(x) whose graph is this parabola as

$$p(x) = a x^2 + b x + c$$

with unknown parameters a, b, c then since we want  $p(0) = y_1$  we solve  $y_1 = p(0) = 0 + 0 + c$  to deduce that  $c = y_1$ .

<u>w4.2a</u>) Use the requirement that the graph of p(x) is also to pass through the other two points,  $(-h, y_0)$ ,  $(h, y_2)$  to express *a*, *b* in terms of *h*,  $y_0, y_1, y_2$ .

<u>w4.2b)</u> Compute

 $\int_{-k}^{n} p(x) dx$  for these values of a, b, c and verify equation (1) above.



Remark: If you've forgotten, or if you never talked about Simpson's rule in your Calculus class, here's how it goes: In order to approximate the definite integral of f(x) on the interval [a, b], you subdivide

[a, b] into 2 n = N subintervals of width  $\Delta x = \frac{b-a}{2n} = h$ . Label the *x*-values  $x_0 = a, x_1 = a + h, x_2 = a + 2h, \dots, x_{2n} = b$ , with corresponding *y*-values  $y_i = f(x_i), i = 0, \dots n$ . On each successive pair of intervals use the stencil above, estimating the integral of *f* by the integral of the parabola. This yields the very accurate (for large enough *n*) Simpson's rule formula

$$\int_{a}^{b} f(x) \, \mathrm{d}x \approx \frac{2h}{6} \left( \left( y_0 + 4y_1 + y_2 \right) + \left( y_2 + 4y_3 + y_4 \right) + \dots + \left( y_{2n-2} + 4y_{2n-1} + y_{2n} \right) \right),$$

i.e.

$$\int_{a}^{b} f(x) \, \mathrm{d}x \approx \frac{b-a}{6n} \left( y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + \dots + 2y_{2n-2} + 4y_{2n-1} + y_{2n} \right) \, .$$

http://en.wikipedia.org/wiki/Simpson's\_rule