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3.5 Matrix inverses.

We've been talking about matrix algebra: addition, scalar multiplication, multiplication, and how these 
operations combine.  At the end of class on Wednesday we had just gotten to:

Properties for the algebra of matrix addition and multiplication :

,   Multiplication is not commutative in general (AB usually does not equal BA , even if you're multiplying 
square matrices so that at least the product matrices are the same size).

But other properties you're used to do hold:
,     C  is commutative                                       ACB = BCA 
,     C  is associative                                         ACB CC = AC BCC  
,     scalar multiplication distributes over C     c ACB = cAC cB .
,     multiplication is associative                         AB C = A BC  .
,     matrix multiplication distributes over C     A BCC = ABCAC; 
                                                                              ACB C = ACCBC 

Exercise 0)  Most of these properties are easy to verify....check some!  The only one that would take 
substantial calculation is the associative property, but at least you've seen that it does work in examples, in 
your homework for today.  We can also verify that the matrix dimensions work out correctly.



But I haven't told you what the algebra on the previous page is good for.  Today we'll start to find out.  By 
way of comparison, think of a scalar linear equation with known numbers a, b, c, d and an unknown 
number x, 

a xC b = c xC d
We know how to solve it by collecting terms and doing scalar algebra:

a xK c x = dK b 
aK c  x = dK b       *

x =
dK b
aK c

 .

How would you solve such an equation if A, B, C, D were square matrices, and X was a vector (or matrix)
?  Well, you could use the matrix algebra properties we've just discussed to get to the ∗ step.  And then if 
X was a vector you could solve the system * with Gaussian elimination.  In fact, if X was a matrix, you 
could solve for each column of X (and do it all at once) with Gaussian elimination.  

But you couldn't proceed as with scalars and do the final step after the * because it is not possible to divide
by a matrix. Today we'll talk about a potential shortcut for that last step that is an analog of of dividing, in 
order to solve for X .  It involves the concept of inverse matrices.

Step 1:
Identity matrices:  Recall that the n# n identity matrix In # n has one's down the diagonal (by which we 
mean the diagonal from the upper left to lower right corner), and zeroes elsewhere.  For example,

I1 # 1 = 1  ,      I2 # 2 =
1 0

0 1
,      I3 # 3 =

1 0 0

0 1 0

0 0 1
 , etc.

In other words, entryi i In # n = 1 and entryi j In # n = 0 if i s j .

Exercise 1)  Check that
Am# n In # n = A,       Im# m Am# n = A .

Hint: for the first equality show that the jth columns of each side agree.  Use the fact that the jth column of 
any matrix product A B is A times the jth column of B.  For the second equality use the fact that the ith row 
of the product is the ith row of A times B. 

Remark:  That's why these matrices are called identity matrices - they are the matrix version of 
multiplicative identities, e.g. like multiplying by the number 1 in the real number system.)



Step 2:
Matrix inverses:  A square matrix An # n is invertible if there is a matrix Bn # n so that

AB = BA = I .
In this case we call B the inverse of A, and write B = AK1 .

Remark:   A matrix A can have at most one inverse, because if we have two candidates B, C with
AB = BA = I    and also    AC = CA = I 

then
BA C = IC = C  

B AC = BI = B 
so since the associative property BA C = B AC  is true, it must be that

B = C.  

Exercise 2a)  Verify that for A =
1 2

3 4
 the inverse matrix is B =

K2 1

3
2

K
1
2

 .

Inverse matrices are very useful in solving algebra problems.  For example

Theorem:  If AK1 exists then the only solution to Ax = b is x = AK1b .

Exercise 2b)  Use the theorem and AK1 in 2a, to write down the solution to the system
xC 2 y = 5  

3 xC 4 y = 6      



Exercise 3a)   Use matrix algebra to verify why the Theorem is true.  Notice that the correct formula is 
x = AK1b  and not x = b AK1  (this second product can't even be computed because the dimensions don't 
match up!).

3b)  Assuming A is a square matrix with an inverse AK1, and that the matrices in the equation below have 
dimensions which make for meaningful equation, solve for X in terms of the other matrices:

XACC = B



Step 3:
But where did that formula for AK1 come from?
Answer:  Consider AK1 as an unknown matrix, AK1 = X .  We want

A X = I .
In the 2# 2 case, we can break this matrix equation down by columns:

A col1 X col2 X =
1

0

0

1
 .

In other words, the two columns of the inverse matrix X should satisfy

A col1 X =
1

0
,   A col2 X =

0

1
  .

We can solve for both of these mystery columns at once:

Exercise 4:  Reduce the double augmented matrix
1 2

3 4

1

0

0

1
 

to find the two columns of AK1 for the previous example.



Exercise 5:  Will this always work?  Can you find AK1 for 

A :=

1 5 1

2 5 0

2 7 1
 ?



> > 

> > 

> > 

Exercise 6)  Will this always work?  Try to find BK1 for B :=

1 5 5

2 5 0

2 7 4
 .

Hint:  We'll discover that it's impossible for B to have an inverse.

Exercise 7)  What happens when we ask software like Maple for the inverse matrices above?

with LinearAlgebra :

1 5 1

2 5 0

2 7 1

K1

;  

1 5 5

2 5 0

2 7 4

K1

;



Theorem:  Let An # n be a square matrix.  Then A has an inverse matrix if and only if its reduced row 
echelon form is the identity.  In this case the algorithm illustrated on the previous page will always yield 
the inverse matrix.

explanation:  By the previous theorem, when AK1exists, the solutions to linear systems
A x = b 

are unique (x = AK1b .  From our discussions on Tuesday and Wednesday, we know that for square 
matrices, solutions to such linear systems exist and are unique only if the reduced row echelon form of A is
the identity. (Do you remember why?)  Thus by logic, whenever AK1exists, A reduces to the identity.

In this case that A does reduce to I, we search for AK1 as the solution matrix X to the matrix equation
A X = I 

i.e.

A col1 X col2 X .... coln X =

1

0

0

0

0

1

0

0

....

0

0

0

1

   

Because A reduces to the identity matrix, we may solve for X column by column as in the examples we just
worked, by using a chain of elementary row operations:

 A  I ///// I  B ,
and deduce that the columns of X are exactly the columns of B, i.e. X = B.  Thus we know that

A B = I .
To realize that B A = I as well, we would try to solve B Y = I for Y, and hope Y = A .  But we can actually 
verify this fact by reordering the columns of I  B  to read B  I  and then reversing each of the 
elementary row operations in the first computation, i.e. create the chain

B  I ///// I  A  .
so B A = I also holds.  (This is one of those rare times when matrix multiplication actually is commuative.) 

To summarize:  If AK1 exists, then the reduced row echelon form of A is the identity.  If the reduced row 
echelon form of A is the identity, then AK1 exists.  That's exactly what the Theorem claims.



There's a nice formula for the inverses of 2# 2 matrices, and it turns out this formula will lead to the next 
text section 3.6 on determinants:

Theorem:  
a b

c d

K1

 exists if and only if the determinant D = adK bd of  
a b

c d
 is non-zero.  And in 

this case,

 
a b

c d

K1

=
1

adK bc
d Kb

Kc a
 

(Notice that the diagonal entries have been swapped, and minus signs have been placed in front of the off-
diagonal terms.  This formula should be memorized.)

Exercise 8a)  Check that this formula for the inverse works, for D s 0 .  (We could have derived it with 
elementary row operations, but it's easy to check since we've been handed the formula.)

8b)  Even with systems of two equations in two unknowns, unless they come from very special problems 
the algebra is likely to be messier than you might expect (without the formula above).  Use the magic 
formula to solve the system

3 xC 7 y = 5  
5 xC 4 y = 8 .

Remark:  For a 2# 2 matrix 
a b

c d
, the reduced row echelon form will be the identity if and only if the 

two rows are not multiples of each other.  If a, b  are both non-zero this is equivalent to saying that the 

ratio of the first entries in the rows 
c
a

s
d
b

 , the ratio of the second entries.  Cross multiplying we see 

this is the same as ad s bc , i.e. adK bc s 0 .  This is also the correct condition for the rows not being 
multiples, even if one or both of a, b are zero, and so by the previous theorem this is the correct condition 
for knowing the inverse matrix exists.

Remark:  Determinants are defined for square matrices An # n and they determine whether or not the 
inverse matrices exist, (i.e. whether the reduced row echelon form of A is the identity matrix).  And when 
n O 2 there are analogous (more complicated) magic formulas for the inverse matrices, that generalize the 
one above for n = 2.  This is section 3.6 material that we'll discuss carefully on Monday and Tuesday.


