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5.1  Second order linear differential equations, and vector space theory connections.

In Chapter 5 we focus on the vector space
V = C = d f : =/= s.t. f is a continuous function  

and its subspaces.

Exercise 0)  Verify that the vector space axioms for linear combinations are satisfied.  Recall that the 
function fC g is defined by fC g x d f x C g x  and the scalar multiple c f x  is defined by 
c f x d c f x  .

	

 (α)  Whenever f, g2 V then fC g2 V .  (closure with respect to addition)
	

 (β)   Whenever f2 V and c2 =, then c$f2 V.  (closure with respect to scalar 
multiplication)
As well as:
(a)  fC g = gC f   (commutative property)
(b)  fC gC h = fC g C h  (associative property)
(c)  d 0 2 V so that fC 0 = f is always true.  )  What is the zero vector for functions?
(d)  c f2 V dKf2 V so that fC Kf = 0  (additive inverses)
(e)  c$ fC g = c$fC c$g   (scalar multiplication distributes over vector addition)
(f)  c1 C c2 $f = c1$fC c2$f  (scalar addition distributes over scalar multiplication)
(g)  c1$ c2$f = c1c2 $f  (associative property)
(h)  1$f = f, K1 $f =Kf,  0$f = 0   (these last two actually follow from the others).

Thus all of the concepts and vector space theorems we talked about for =m and its subspaces make sense 
for the function vector space V and its subspaces.  In particular we can talk about
,     the span of a finite collection of functions f1, f2, ... fn .
,     linear independence/dependence for a collection of functions f1, f2, ... fn .
,     subspaces of V 
,     bases and dimension for finite dimensional subspaces.  (The function space V itself is infinite 
dimensional, meaning that no finite collection of functions spans it.)



Definition:  A second order linear differential equation for a function y x  is a differential  equation that 
can be written in the form

A x y##CB x y# CC x y = F x  .
We search for solution functions y x defined on some specified interval I of the form a! x! b, or 
a, N , KN, a  or (usually) the entire real line KN,N .  In this chapter we assume the function A x

s 0 on I, and divide by it in order to rewrite the differential equation in the standard form
y##C p x y#C q x y = f x  .

One reason this DE is called linear is that the "operator" L defined by
L y d y##C p x y#C q x y 

satisfies the so-called linearity properties
     (1) L y1 C y2 = L y1 CL y2  
     (2) L c y = c L y , c2 = .

(Recall that the matrix multiplication function L x d A x satisfied the analogous properties.Any time we 
have have a transformation L satisfying (1),(2), we say it is a linear transformation. )

Exercise 1a)  Check the linearity properties (1),(2) for the differential operator L .
1b)  Use these properties to show that 

Theorem 0:   the solution space to the homogeneous second order linear DE
y##C p x y#C q x y = 0 

is a subspace.  Notice that this is the "same" proof we used to show that the solution space to a 
homogeneous matrix equation is a subspace.

1c)  Use the linearity properties to show 
Theorem 1:  All solutions to the nonhomogeneous second order linear DE

y##C p x y#C q x y = f x  
are of the form y = yPC yH where yP is any single particular solution and yH is some solution to the 
homogeneous DE.  (yH is called yc, for complementary solution, in the text).  Thus, if you can find a single 
particular solution to the nonhomogeneous DE, and all solutions to the homogeneous DE, you've actually 
found all solutions to the nonhomogeneous DE.



Theorem 2  (Existence-Uniqueness Theorem):  Let p x , q x , f x  be specified continuous functions on
the interval I , and let x0 2 I .  Then there is a unique solution y x  to the initial value problem

y##C p x y#C q x y = f x
y x0 = b0 
y# x0 = b1 

and y x  exists and is twice continuously differentiable on the entire interval I .

Exercise 2)  Verify Theorems 1 and 2 for the interval I = KN,N  and the IVP
y##C 2 y#= 3 
y 0 = b0 
y# 0 = b1 

Hint:  This is really a first order DE for v = y# .



Unlike in the previous example, and unlike what was true for the first order linear differential equation
y#C p x y = q x  

there is not a clever integrating factor formula that will always work to find the general solution of the 
second order linear differential equation

y##C p x y#C q x y = f x .  
Rather, we will usually resort to vector space theory and algorithms based on clever guessing. It will help 
to know

Theorem 3:  The solution space to the second order homogeneous linear differential equation
y##C p x y#C q x y = 0 

is 2-dimensional.

This Theorem and the techniques we'll be using is illustrated by
Exercise 3)  Consider the homogeneous linear DE for y x  

y##K2 y#K3 y = 0 
3a)  Find two exponential functions y1 x = er x , y2 x = er x that solve this DE. 
3b)  Show that every IVP

y##K2 y#K3 y = 0 
y 0 = b0 
y# 0 = b1 

can be solved with a unique linear combination y x = c1y1 x C c2y2 x  .
Then use the uniqueness theorem to deduce that y1, y2 are a basis for the solution space to this 
homogeneous differential equation.



Although we don't have the tools yet to prove the existence-uniqueness result Theorem 2, we can use it to 
prove the dimension result Theorem 3.  Here's how (and this is really just an abstractified version of the 
example on the previous page):

Consider the homogeneous differential equation
y##C p x y#C q x y = 0 

on an interval I for which the hypotheses of the existence-uniqueness theorem hold.
Pick any x0 2 I .  Find solutions y1 x , y2 x  to IVP's at x0 so that the so-called Wronskian matrix for 
y1, y2 at x0

W y1, y2 x0 =
y1 x0 y2 x0
y1 # x0 y2 # x0

 

is invertible  (i.e. 
y1 x0
y1 # x0

,
y2 x0
y2 # x0

 are a basis for =2 , or equivalently so that the determinant of 

the Wronskian matrix (called just the Wronskian) is non-zero at x0 ).

,     You may be able to find suitable y1, y2 by good guessing, as in the previous example, but the 
existence-uniqueness theorem guarantees they exist even if you don't know how to find formulas for them.

Under these conditions, the solutions y1, y2 are actually a basis for the solution space!  Here's why:
, span:  the condition that the Wronskian matrix is invertible at x0 means we can solve each IVP there with
a linear combination y = c1y1 C c2y2 :   In that case, y#= c1y1 #C c2y2 # so to solve the IVP

y##C p x y#C q x y = 0
y x0 = b0 
y# x0 = b1 

we set
c1 y1 x0 C c2 y2 x0 = b0 
c1 y1 # x0 C c2 y2 # x0 = b1

which has unique solution c1, c2
T given by

c1
c2

=
y1 x0 y2 x0
y1 # x0 y2 # x0

K1
b0

b1
.

Since the uniqueness theorem says each IVP has a unique solution, this must be it.  Since each solution 
y x  to the differential equation solves some initial value problem at x0, each solution y x  is a linear 
combination of y1, y2.  Thus y1, y2 span the solution space.  
, Linear independence:  The computation above shows that there is only one way to write any solution 
y x  to the differential equation as a linear combination of y1, y2, because the linear combination 
coefficients c1, c2 are uniquely determined by the values of y x0 , y# x0 . (In particular they must be zero
if y x h 0, because for the zero function b0, b1 are both zero so c1, c2 are too. This shows linear 
independence.)
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