
Math 2250-4                            
Mon Feb 25    
4.4  Basis and dimension, and studying subspaces.  Key facts from 4.1-4.4.

There are two ways that we have encountered subspaces:

1)   W = span v1, v2, ... , vn .  
This is Theorem 1, discussed in detail in Friday's notes.  Expressing a subspace this way is an explicit way
to describe the subspace W, because you are "listing" all of the vectors in it.  In this case we prefer that 
v1, v2, ... , vn be linearly independent, i.e. a basis, so that each w2 W is a unique linear combination of 
these spanning vectors.

2)  W = x2 =n such that Am# nx = 0 . 
This is Theorem 2, also discussed on Friday.  This is an implicit way to describe the subspace W  because 
you're only specifying a matrix equation that the vectors in W must satisfy, but you're not saying what the 
vectors are.  In this case we know how to reduce A (virtually augmented with a zero vector) and backsolve,
from Chapter 3. This lets us re-express W explicitly as the span of a collection of vectors, one for each free
parameter in the solution.  It turns out that when follow this algorithm and extract the vectors whose span 
is the solution space W they are always linearly independent, so a basis.

,    Finish the exercises at the end of Friday's notes, which I've copied into the start of today's notes. They 
illustrate Theorem 2 and Theorem 1. 

,     In these exercises the same matrix Am# n is being used to study two different but subtly related 
subspaces:

Exercise 1:            W = nullspace A d x2 =n such that Am# nx = 0 4 =n  
Exercise 2:            W = columnspace A d span col1 A , col2 A ,... coln A 4 =m.

There are actually four fundamental subspaces associated to each m # n matrix A.  The other two are
W = nullspace AT d y2 =m such that ATy = 0 4 =m

W = rowspace A d span row1 A , row2 A , ... rowm A 4 =n.



Exercise 1   Consider the matrix equation A x = 0 , with the matrix A (and its reduced row echelon form) 
shown below:

A :=

1 2 0 1 1 2
2 4 1 4 1 7

K1 K2 1 1 K2 1
K2 K4 0 K2 K2 K4

     /     

1 2 0 1 1 2
0 0 1 2 K1 3
0 0 0 0 0 0
0 0 0 0 0 0

  

Find a basis for the solution space  W = x2 =6 s.t. A x = 0   by backsolving, writing your explicit 
solutions in linear combination form, and extracting a basis.  Explain why these vectors span the solution 
space and verify that they're linearly independent.



Solution (don't peek :-): backsolve, realizing that the augmented matrices have final columns of zero.  
Label the free variables with the letter "t", and subscripts to show the non-leading 1 columns from which 
they arose:

x6 = t6, x5 = t5, x4 = t4, x3 =K2 t4 C t5 K 3 t6 
x2 = t2, x1 =K2 t2 K t4 K t5 K 2 t6 .

In vector form and then linear combination form this is:
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Thus the four vectors
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are a basis for the solution space:
,   They span the solution space by construction.  
,  They are linearly independent because if we set a linear combination equal to zero:
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then looking in the second entry implies t2 = 0,  the fourth entry implies t4 = 0, and similarly t5 = t6 = 0 .



Exercise 2a)  Consider the six vectors in =4 that were the columns of the previous matrix A.  Find a basis 
for the subspace W 4 =4 spanned of these six vectors.  Here's the same computation we used before:

A :=

1 2 0 1 1 2
2 4 1 4 1 7

K1 K2 1 1 K2 1
K2 K4 0 K2 K2 K4

     /     

1 2 0 1 1 2
0 0 1 2 K1 3
0 0 0 0 0 0
0 0 0 0 0 0

.

2b)  What is the dimension of this subspace of =4?



Exercise 3)   There's a connection between the basis of 
W = nullspace A d x2 =6 such that A x = 0 4 =6  

that we found in  Exercise 1 and how we found the dependencies in Exercise 2, in order to throw vectors 
away and get a basis for

 W = columnspace A d span col1 A , col2 A ,... col6 A 4 =4.

The connection is that, as we've emphasized, homogeneous solutions x to A x = 0 correspond to column 
dependencies for A .  Look once more at the basis vectors for the solution space to A x = 0 that you found 
in Exercise 1 and the column dependencies you found in Exercise 2.  I wrote the Exercise 1 basis vectors 
and the reduced row echelon form computation below.  Notice that the basis for the homogeneous solution
space is equivalent the "basis" for all of the column dependencies that you found in Exercise 2.
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A :=

1 2 0 1 1 2
2 4 1 4 1 7

K1 K2 1 1 K2 1
K2 K4 0 K2 K2 K4

     /     

1 2 0 1 1 2
0 0 1 2 K1 3
0 0 0 0 0 0
0 0 0 0 0 0

.

Remark)  Why each matrix only has one possible Reduced Row Echelon Form:  The four conditions for 
rref (zero rows at bottom, non-zero rows start with leading ones, leading ones in successive rows move to 
the right, all column entries in any column containing a leading "1" are zero except for that "1"), together 
with specified column dependencies as above uniquely determine the reduced row echelon form of any 
matrix!  You can see this with the matrix A above.



Some important facts about spanning sets, independence, bases and dimension follow from one key fact, 
and then logic.  We will want to use these facts going forward, as we return to studying differential 
equations tomorrow.

key fact:  If n vectors v1, v2, ... vn span a subspace W then any collection w1, w2, ... wN of vectors in W  
with N O n will always be linearly dependent.  (This is explained on pages 254-255 of the text, and has to 
to do with matrix facts that we already know.)  Notice too that this fact fits our intuition based on what we 
know in the special case that W = =n.)

Thus:
1)  If a finite collection of vectors in W is linearly independent, then no collection with fewer vectors can 
span all of W .  (This is because if the smaller collection did span, the larger collection wouldn't have been 
linearly independent after all, by the key fact.)

2)  Every basis of W has the same number of vectors, so the concept of dimension is well-defined and 
doesn't depend on choice of basis.  (This is because if v1, v2, ... vn are a basis for W then every larger 
collection of vectors is dependent by the key fact and every smaller collection fails to span by (1), so only 
collections with exactly n vectors have a chance to be bases.)

3)  Let the dimension of W be the number n, i.e. there is some basis  v1, v2, ... vn for W.  Then if vectors 
w1, w2, ... wn span W then they're automatically linearly independent and thus a basis.  (If they were 
dependent we could delete one of the wj that was a linear combination of the others and still have a 
spanning set.  This would violate (1) since v1, v2, ... vn are linearly independent.)

4)  If the dimension of W is the number n, and if w1, w2, ... wn are in W and are linearly independent, then 
they automatically span W and thus are a basis.  (If they didn't span W we could augment with a vector 
wn C 1 not in their span and have a collection of nC 1 still independent* vectors in W, violating the key 
fact. )

*  Check: If w1, w2, ... wn are linearly independent, and wn C 1 ; span w1, w2, ... wn , then 
w1, w2, ... wn, wn C 1 are also linearly independent. This fact generalizes the ideas we used when we 
figured out all possible subspaces of =3.  Here's how it goes:   

To show the larger collection is still linearly independent study the equation
c1w1 C c2w2 C ... C cnwn C d wn C 1 = 0 .

Since w; span w1, w2, ... wn  it must be that d = 0 (since otherwise we could solve for wn C 1 as a 
linear combination of  w1, w2, ... wn).  But once d = 0 , we have

c1w1 C c2w2 C ... C cnwn = 0
which implies c1 = c2 =...= cn = 0 by the independence of w1, w2, ... wn .

&


