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4.1 - 4.3  Linear combinations of vectors, introduction and overview.

Definition:  If we have a collection of n vectors v1, v2,  ... vn  in =m, then any vector v2 =m that can be 
expressed as a sum of scalar multiples of these vectors is called a linear combination of them.  In other 
words, if we can write

v = c1v1 C c2v2 C ... C cnvn ,
then v is a linear combination of v1, v2,  ... vn .

Remark:  When we had free parameters in our solutions to linear systems of equations back in Chapter 3, 
we often rewrote the explicit solutions using linear combinations, where the scalars were the free 
parameters (which we often labeled with letters that were "t,p,s,q" etc., rather than "c").

Definition:  If we have a collection  y1, y2, ... , yn   of n functions y x  defined on a common interval I , 
then any function that can be expressed as a
sum of scalar multiples of these functions is called a linear combination of them.  In other words, if we can
write

y = c1y1 C c2y2 C ... C cnyn ,
then y is a linear combination of y1, y2, ... , yn .

The reason that the same words are used to describe what look like two quite different geometric 
situations, is that there is a common fabric of mathematics (called vector space theory) that underlies both 
situations.  We shall be exploring these concepts over the next several lectures, using a lot of the matrix 
algebra theory we've just developed in Chapter 3.  Believe it or not, this vector space theory will tie directly
back into our study of differential equations, which we will return to in Chapter 5.



Exercise 1)  (Linear combinations in =2... this will also review the geometric meaning of vector addition 
and scalar multiplication, in terms of net displacements.)
Can you get to the point K2, 8 2 =2 , from the origin 0, 0  , by moving only in the (±) directions of 

v1 =
1

K1
 and v2 =

1

3
 ?  Algebraically, this means we want to solve the linear combination problem

c1
1

K1
C c2

1

3
=

K2

8
 .

1a)  Superimpose a grid related to the displacement vectors v1, v2 onto the graph paper below, and, 
recalling that vector addition yields net displacement, and scalar multiplication yields scaled displacement, 
try to approximately solve the linear combination problem above, geometrically.
1b)  Rewrite the linear combination problem as a matrix equation, and solve it exactly, algebraically.

1c)  Can you get to any point b1, b2  in =2, starting at 0, 0  and moving only in directions parallel to 

v1, v2 ?  Argue geometrically and algebraically.  How many ways are there to express b1, b2
T as a linear 

combination of v1 and v2?



Exercise 2)  Consider the "homogeneous linear" second order differential equation for y x :
y##K2 y#K3 y = 0 .

2a)  Show that y1 x = eKx and y2 x = e3 x solve this differential equation.

2b)  Show that linear combinations y x = c1e
KxC c2e

3 x of the functions eKx, e3 x solve the homogeneous 
DE

y##K2 y#K3 y = 0.



2d)  Find a solution to the initial value problem
y##K2 y#K3 y = 0  

y 0 =K2 
y# 0 = 8 

that is a linear combination y x = c1e
KxC c2e

3 x of the functions eKx and e3 x.

2e)  Although we don't have the tools to explain why yet, it is a fact that solutions to initial value problems 
of the form

y##K2 y#K3 y = 0  
y 0 = b1 
y# 0 = b2 

are unique, if they exist.  Use this fact to show that every solution to such an initial value problem is in fact
a linear combination of eKx and e3 x .  Notice that you're using exactly the same matrix algebra in (2d)(2e) 
as you did in problems (1b)(1c).



further language ...
Definition:  The span of a collection of vectors v1, v2,  ... vn  in =m is the (larger!) collection of all vectors
w  which are linear combinations of v1, v2,  ... vn  .  The span of a collection of functions y1, y2,... yn  is
the (larger!) collection of functions y which are linear combinations of them.

Examples:  

I)   In Exercise 1 we showed that the span of  v1 =
1

K1
 and v2 =

1

3
 is all of =2 .  (To make this 

statement precisely correct we need to identify points b1, b2  in =2 with their displacement (or 

"position") vectors 
b1

b2
 from the origin 0, 0 . )

II)  In Exercise 2 we showed that the span of  y1 x = eKx and y2 x = e3 x was the entire solution space to
the homogeneous differential equation

y##K2 y#K3 y = 0 .

Exercise 3)  By carefully expanding the linear combination below, check than in =m , the linear 
combination

c1

a11

a21

:

am1

C c2

a12

a22

:

am2

C...C cn

a1 n

a2 n

0

amn

 

is always just the matrix product
a11 a12 ... a1n

a21 a22 ... a2n

: : : :

am1 am2 ... amn

c1
c2
:

cn

.

Thus any linear combination problem in =m reduces to a matrix problem, just like those we've been 
studying in Chapter 3.  This is the main theme of Chapter 4.
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Exercise 4)  Consider the three vectors 

v1 =

2

1

1
,  v2 =

K1

1

K5
,  v3 =

4

K1

11
 2 =3 .

4a)  Is b = 6, 3, 3 T a linear combination of v1, v2, v3 ?
4b)  Are the linear combination scalars c1, c2, c3 unique?
4c)  Explain why the span of  v1, v2, v3 is actually the span of just v1, v2.  Hint: Use the Maple results 
below.

with LinearAlgebra :
Ad Matrix 3, 3, 2,K1, 4, 1, 1,K1, 1,K5, 11 :
 Aaugbd A Vector 6, 3, 3 ;
 ReducedRowEchelonForm Aaugb ;

Aaugb :=

2 K1 4 6

1 1 K1 3

1 K5 11 3

1 0 1 3

0 1 K2 0

0 0 0 0



4d)  It turns out that the span of  v1, v2, v3, which we now know is just the span of v1, v2 , is a plane in =3.

Note that it includes the origin 0, 0, 0 , i.e position vector 0, 0, 0 T .  Find the implicit equation 
a xC b yC c z = 0 for this plane.  Hint:  You want to know for which vectors x = x, y, z T we can find 
linear combination coefficients c1, c2 so that

c1v1 C c2v2 = x 
which leads to the augmented matrix

2 K2

1 1

1 K5

x

y

z
  .

Reduce this system by hand to find your answer!  Can you sketch a picture?


