
Math 2250-4  
Mon Feb 11
3.6 Determinants

,  Set times for homework problem session tomorrow, and for old exam review.  Rooms TBA.

First, use today's notes finish the last example from Friday, in order to review the algorithm for finding 
inverse matrices, and to discover the precise conditions under which inverse matrices do and do not exist:

Exercise 0)  Does every square matrix have an inverse?  Try to find BK1 for B :=

1 5 5

2 5 0

2 7 4
 .  Use the 

algorithm from Friday, where we try find the three columns of X = BK1 by solving the triple-augmented 
matrix:

1 5 5

2 5 0

2 7 4

1 0 0

0 1 0

0 0 1
.

Hint:  We'll discover that it's impossible for B to have an inverse.



Then use Theorem 1 from Friday in order to understand Theorem 2 about when matrix inverses do and do 
not exist:

Theorem 1:  If An # n is a square matrix, and if AK1 exists, then the only solution x to the matrix equation
A x = b 

is x = AK1b .

Theorem 2: 
Let An # n be a square matrix.  Then A has an inverse matrix if and only if its reduced row echelon form is 
the identity matrix I.  In this case the algorithm we illustrated on Friday - reducing the augmented matrix 
A  I  / I  B   yields the inverse matrix AK1 = B .

explanation:   From our discussions last Tuesday and Wednesday, we know that for square matrices 
An # n, solutions to A x = b  exist and are unique only if the reduced row echelon form of A is the identity. 

(Do you remember why?)  Thus by logic, whenever AK1exists, A reduces to the identity.

In this case that A does reduce to I, we search for AK1 as the solution matrix X to the matrix equation
A X = I 

i.e.

A col
1

X col
2

X .... col
n

X =

1
0
0
0

0
1
0
0

....

0
0
0
1

   

Because A reduces to the identity matrix, we may solve for X column by column as in the examples we 
worked Friday, by using a chain of elementary row operations:

 A  I ///// I  B ,
and deduce that the columns of X are exactly the columns of B, i.e. X = B.  Thus we know that

A B = I .
To realize that B A = I as well, we would try to solve B Y = I for Y, and hope Y = A .  But we can actually 
verify this fact by reordering the columns of I  B  to read B  I  and then reversing each of the 
elementary row operations in the first computation, i.e. create the chain

B  I ///// I  A  .
so B A = I also holds.  (This is one of those rare times when matrix multiplication actually is commuative.) 

To summarize:  If AK1 exists, then solutions x to A x = b always exist and are unique, so the reduced row 
echelon form of A is the identity I.  Conversely, if the reduced row echelon form of A is I, then AK1 exists. 
That's exactly what Theorem 2 claims.



3.6
There's a nice formula for the inverses of 2# 2 matrices, and it turns out this formula will lead to the next 
text section 3.6 on determinants:

Theorem 3:  
a b

c d

K1

 exists if and only if the determinant D = adK bc of  
a b

c d
 is non-zero.  And in 

this case,

 
a b

c d

K1

=
1

adK bc
d Kb

Kc a
 

(Notice that the diagonal entries have been swapped, and minus signs have been placed in front of the off-
diagonal terms.  This formula should be memorized.)

Exercise 1a)  Check that this formula for the inverse works, for D s 0 .  (We could have derived it with 
elementary row operations, but it's easy to check since we've been handed the formula.)

1b)  Even with systems of two equations in two unknowns, unless they come from very special problems 
the algebra is likely to be messier than you might expect (without the formula above).  Use the magic 
formula to solve the system

3 xC 7 y = 5  
5 xC 4 y = 8 .

Remark:  For a 2# 2 matrix 
a b

c d
, the reduced row echelon form will be the identity if and only if the 

two rows are not multiples of each other.  If a, b  are both non-zero this is equivalent to saying that the 

ratio of the first entries in the rows 
c
a

s
d
b

 , the ratio of the second entries.  Cross multiplying we see 

this is the same as ad s bc , i.e. adK bc s 0 .  This is also the correct condition for the rows not being 
multiples, even if one or both of a, b are zero, which is the same as saying that A reduces to I.  So by the 
previous theorem this is the correct condition for knowing the inverse matrix exists.



Remark:  Determinants are scalars defined for square matrices An # n and they always determine whether 
or not the inverse matrices exist, (i.e. whether the reduced row echelon form of A is the identity matrix).  
The determinant of A is non-zero if and only if AK1 exists. The determinant of a 1# 1 matrix a11  is 
defined to be the number a11, determinants of 2# 2 matrices are defined as on the previous page, and in 
general determinants for n# n matrices are defined recursively, in terms of determinants of 
nK 1 # nK 1  submatrices:

Definition:  Let An # n = ai j  .  Then the determinant of A, written det A  or A  , is defined by

det A d >
j = 1

n

a1 j K1 1 C jM1 j = >
j = 1

n

a1 jC1 j .

Here M1 j is the determinant of the nK 1 # nK 1  matrix obtained from A by deleting the first row 

and the jth column, and C1 j is simply K1 1 C jM1 j .

More generally, the determinant of the nK 1 # nK 1  matrix obtained by deleting row i and column j 
from A is called the i j Minor Mi j  of A, and Ci j d K1 i C jMi j is called the i j Cofactor of A .

Theorem: (proof is in text appendix) det A  can be computed by expanding across any row, say row i: 

det A d >
j = 1

n

ai j K1 i C jMi j = >
j = 1

n

ai jCi j

or by expanding down any column, say column j: 

det A d >
i = 1

n

ai j K1 i C jMi j = >
i = 1

n

ai jCi j .

Exercise 2a)  Let A :=

1 2 K1

0 3 1

2 K2 1
 .  Compute det A  using the definition.



2b)  Verify that the matrix of all the cofactors of A is given by Ci j =

5 2 K6

0 3 6

5 K1 3
 .  Then expand 

det A  down various columns and rows using the ai j factors and Ci j cofactors.  Verify that you always 
get the same value for det A  .  Notice that in each case you are taking the dot product of a row (or 
column) of A with the corresponding row (or column) of the cofactor matrix.
2c)  What happens if you take dot products between a row of A and a different row of Ci j  ?  A column 
of A and a different column of Ci j  ?   The answer may seem magic.



Exercise 3)  Compute the following determinants by being clever about which rows or columns to use:

3a)  

1 38 106 3

0 2 92 K72

0 0 3 45

0 0 0 K2

 ;                             3b)   

1 0 0 0

p
2

2 0 0

0.476 88 3 0

1 22 33 K2

 .

Exercise 4)  Explain why it is always true that for an upper triangular matrix (as in 3a), or for a lower 
triangular matrix (as in 3b), the determinant is always just the product of the diagonal entries.



The effective way to compute determinants for larger-sized matrices without lots of zeroes is to not use the 
definition, but rather to use the following facts, which track how elementary row operations affect 
determinants:
,     (1a)  Swapping any two rows changes the sign of the determinant.
             proof:  This is clear for 2# 2 matrices, since

a b

c d
= ad K bc,          

c d
a b = cb K ad .

               For 3# 3 determinants, expand across the row not being swapped, and use 
               the 2# 2 swap property  to deduce the result.  Prove the general result by induction:  
               once it's true for n# n matrices you can prove it for any nC 1 # nC 1  matrix, 
               by expanding across a row that wasn't swapped, and applying the n# n result.
         (1b)   Thus, if two rows in a matrix are the same, the determinant of the matrix must be zero:  
                on the one hand, swapping those two rows leaves the matrix and its determinant unchanged;
                on the other hand, by (1a) the determinant changes its sign.  The only way this is possible
                is if the determinant is zero.
,       (2a)   If you factor a constant out of a row, then you factor the same constant out of the determinant.
                Precisely, using R

i
 for ith row of A , and writing R

i
= c R

i
*  

 R
1
 

 R
2
 

:  
 R

i
 

  R
n
 

=

 R
1
 

 R
2
 

:  
 c R

i
* 

  R
n
 

= c 

 R
1
 

 R
2
 

:  
 R

i
* 

  R
n
 

  .

              proof:  expand across the ith row,  noting that the corresponding cofactors don't 
              change, since they're computed by deleting the ith row:

det A = >
j = 1

n

ai jCi j = >
j = 1

n

c ai j
* Ci j = c>

j = 1

n

ai j
* Ci j = c det A*  .

         (2b)  Combining (2a) with (1b), we see that if one row in A is a scalar multiple 
              of another, then det A = 0 .

,       (3)  If you replace row i of A by its sum with a multiple of another row, then the 
              determinant is unchanged!  Expand across the ith row:

 R
1
 

 R
2
 

R
k
 

 R
i
C c R

k
 

  R
n
 

= >
j = 1

n

a
i j
C c a

k j
C

i j
= >

j = 1

n

a
i j

C
i j
C c>

j = 1

n

a
k j

C
i j

= det A C c 

 R
1
 

 R
2
 

R
k
 

 R
k
 

  R
n
 

= det A C 0 .

Remark:  The analogous properties hold for corresponding "elementary column operations".  In fact, the 
proofs are almost identical, except you use column expansions.



> > 
> > 

Exercise 5)  Recompute 

1 2 K1

0 3 1

2 K2 1
 using elementary row operations (and/or elementary column 

operations).

Exercise 6)  Compute 

1 0 K1 2

2 1 1 0

2 0 1 1

K1 0 K2 1

 .

Maple check:
with LinearAlgebra :
A d Matrix 4, 4, 1, 0,K1, 2, 2, 1, 1, 0, 2, 0, 1, 1,K1, 0,K2, 1 ;
 Determinant A ;



Tomorrow we'll find the magic formula for matrix inverses that uses determinants.  But today, if we have 
time, we have the tools to check that the determinant does determine whether or not matrices have inverses:

Theorem 4:  Let An # n .  Then AK1 exists if and only if det A s 0 .

proof:  We already know that AK1 exists if and only if the reduced row echelon form of A is the identity 
matrix.  Now, consider reducing A to its reduced row echelon form, and keep track of how the 
determinants of the corresponding matrices change:  As we do elementary row operations,
,   if we swap rows, the sign of the determinant switches.
,   if we factor non-zero factors out of rows, we factor the same factors out of the determinants.
,   if we replace a row by its sum with a multiple of another row, the determinant is unchanged.

Thus, 
         A  = c1 A1 = c1c2 A2 = ... = c1c2 ... cN rref A  

where the nonzero ck 's arise from the three types of elementary row operations.  If rref A = I its 
determinant is 1, and  A = c1c2 ... cN s 0 .  If rref A s I then its bottom row is all zeroes and its 
determinant is zero, so  A = c1c2 ... cN 0 = 0 .  Thus A s 0 if and only if rref A = I if and only if 

AK1 exists.

Remark:  Using the same ideas as above, you can show that det A B = det A det B .  This is an 
important identity that gets used, for example, in multivariable change of variables formulas for integration,
using the Jacobian matrix.  (It is not true that det ACB = det A C det B  .)  Here's how to show 
det A B = det A det B : The key point is that if you do an elementary row operation to AB , that's the 
same as doing the elementary row operation to A , and then multiplying by B.  With that in mind, if you do 
exactly the same elementary row operations as you did for A  in the theorem above, you get

  A B  = c1 A1B = c1c2 A2B = ... = c1c2 ... cN rref A B .
If rref A = I , then from the theorem above,  A = c1c2 ... cN , and we deduce A B = A B . If 
rref A s I , then its bottom row is zeroes, and so is the bottom row of rref A B .  Thus A B = 0 and 
also A B = 0 .


