
Math 2250-4
Wed Apr 3
6.2  Eigenvalues and eigenvectors for square matrices; diagonalizability of matrices.

Recall from yesterday, 

Definition:  If An # n and if A v = l v for some scalar l and vector vs 0  then v is called an eigenvector of 

A , and l is called the eigenvalue of v  (and an eigenvalue of A).

,   For general matrices, the eigenvector equation A v = l v  can be rewritten as
AK l I v = 0  .

The only way such an equation can hold for vs 0  is if the matrix AK l I  does not reduce to the 
identity matrix.  In other words - det AK l I  must equal zero.  Thus the only possible eigenvalues 
associated to a given matrix must be roots lj of the characteristic polynomial 

p l = det AK l I  .
,   So, the first step in finding eigenvectors for A is actually to find the eigenvalues - by finding the 
characteristic polynomial and its roots lj .

,   For each root lj the matrix AK lj I will not reduce to the identity, and the solution space to

AK lj I v = 0
will be at least one-dimensional, and have a basis of one or more eigenvectors.  Find such a basis for this 
lj eigenspace E

l
j
 by reducing the homogeneous matrix equation

AK lj I v = 0  ,
backsolving, and extracting a basis.

Exercise 1)  Finish Exercise 4 from yesterday's notes:
a)  Find the eigenvalues and eigenbases for the non-diagonal matrix 

A =
3 2

1 2
 .

b)  Use your work to describe the geometry of the linear transformation

T
x1

x2
=

3 2

1 2

x1

x2
.

Step 1:  yesterday we computed

 det AK l I = det
3 2

1 2
K

l 0

0 l
= det

3K l 2 

1   2K l
  

= lK 3 lK 2 K 2 = l
2
K 5 lC 4 = lK 1 lK 4 . 

Thus the eigenvalues of this matrix A are l = 4, 1.



Step 2:  find bases of eigenvectors for each eigenspace.  For l = 4 we wanted to solve the homogeneous 
equation AK 4 I v = 0, i.e. reduce the augmented matrix

K1 2

1 K2

0

0
 /

1 K2

0 0

0

0
 .

backsolving, v2 = t 2 =, v1 = 2 t, i.e.

v1

v2
= t

2

1
 

and 2, 1 T is an eigenvector (basis) for the l = 4 eigenspace.

Finish part a, by finding an eigenvector basis for the l = 1 eigenspace.  Then complete part b.



Exercise 2)  If your matrix A is diagonal, the general algorithm for finding eigenspace bases just 
reproduces the entries along the diagonal as eigenvalues, and the corresponding standard basis vectors as 
eigenspace bases.  (Recall our diagonal matrix examples from yesterday, where the standard basis vectors 
were eigenvectors.  This is typical for diagonal matrices.)  Illustrate how this works for a 3# 3 diagonal 
matrix, so that in the future you can just read of the eigendata if the matrix you're given is (already) 
diagonal:

A d

a11 0 0

0 a22 0

0 0 a33

 .

step 1)  Find the roots of the characteristic polynomial det AK l I  .
step 2)  Find the eigenspace bases, assuming the values of a11, a22, a33 are distinct (all different).  What if 
a11 = a22 but these values do not equal a33 ?



Exercise 3)  Do the last exercise from Tuesday.  The matrix  for which we want to find eigenvalues and 
eigenspace bases is

B :=

4 K2 1

2 0 1

2 K2 3
 .

step 1)  

BK l I =

4K l K2 1  

2  Kl 1  

2  K2 3K l

=     

step 2)  Find bases for the eigenspaces.  Talk about how you are able to use the fact that homogeneous 
solutions to matrix equations correspond to column dependencies, in order to read off eigenspace bases 
more quickly than by backsolving.... ask questions if this is not clear, because you'll be computing a lot of 
eigenvalues and eigenvectors in the next chapters and you'll save a lot of time if you get comfortable with 
this shortcut.  (Of course, for most larger matrices one just uses technology for eigenvalue/eigenvector 
computation.)



> > 

(1)(1)

> > 

3b)  geometric interpretation:  Notice that you can construct a basis for =3 by combining your eigenspace 
bases on the previous page. Use this fact to describe the geometry of the transformation

T x = B x .

Your algebraic work in exercise 3 is related to the output below:
with LinearAlgebra :
 B dMatrix 3, 3, 4,K2, 1, 2, 0, 1, 2,K2, 3 ;
 Eigenvectors B ;

B :=

4 K2 1
2 0 1
2 K2 3

3
2
2

,
1 1 K

1
2

1 1 0
1 0 1



In all of our examples so far, it turns out that by collecting bases from each eigenspace for the matrix 
An # n, and putting them together, we get a basis for =n .  This lets us understand the geometry of the 
transformation

T x = A x  
almost as well as if A is a diagonal matrix.  Having such a basis of eigenvectors is also extremely useful 
for algebraic computations:

Use the =3 basis made of out eigenvectors of the matrix B in Exercise 3, and put them into the columns of 
a matrix we will call P.  We could order the eigenvectors however we want, but we'll put the E2 basis 
vectors in the first two columns, and the E3 basis vector in the third column:

P :=

0 1 1

1 0 1

2 K2 1
  .

Now do algebra (check these steps and discuss what's going on!)
4 K2 1

2 0 1

2 K2 3

0

1

2

1

0

K2

1

1

1
              

                 =

0

2

4

2

0

K4

3

3

3
             

                         =

0

1

2

1

0

K2

1

1

1

2 0 0

0 2 0

0 0 3
   .

In other words,
 B P = P D , 

where D is the diagonal matrix of eigenvalues (for the corresponding columns of eigenvectors in P).  
Equivalently (multiply on the right by PK1  or on the left by PK1):

B = P D PK1 and PK1BP = D.
Exercise 4)  Use one of the the identities above to show how B100 can be computed with only two matrix 
multiplications! 



Definition:  Let An # n.  If there is an =n (or Cn  basis v1, v2, ..., vn consisting of eigenvectors of A, then A 
is called diagonalizable.  This is why:

Write A vj = lj vj  (some of these lj may be the same, as in the previous example).  Let P be the matrix
P = v1 v2 ... vn . 

Then, using the various ways of understanding matrix multiplication, we see

A P = A v1 v2 ... vn  = l1v1 l2v2 ... lnvn           

  = v1 v2 ... vn

l1 0 ... 0

0 l2 ... 0

: : ... :

0 0 ... ln

. 

A P = P D 
A = P D PK1 
PK1A P = D .

Unfortunately, not all matrices are diagonalizable:
Exercise 5)  Show that 

C :=

2 1 0

0 2 0

0 0 3
  

is not diagonalizable.



Facts about diagonalizability  (see text section 6.2 for complete discussion, with reasoning):

Let An # n have factored characteristic polynomial

 p l = K1 n lK l1

k
1
lK l2

k
2

... lK lm

k
m
  

where like terms have been collected so that each lj is distinct (i.e different).  Notice that 
k1 C k2 C...C km = n 

because the degree of p l  is n.

,   Then 1 % dim E
l

j
% kj .   If  dim E

l
j

! kj then the lj eigenspace is called defective.

,   The matrix A is diagonalizable if and only if each dim E
l

j
= kj .  In this case, one obtains an =n 

eigenbasis simply by combining bases for each eigenspace into one collection of n vectors.  (Later on, the 
same definitions and reasoning will apply to complex eigenvalues and eigenvectors, and a basis of Cn.)

,    In the special case that A has n distinct eigenvalues l1, l2, ..., ln each eigenspace is forced to be 
1Kdimensional since  k1 C k2 C...C kn = n so each kj = 1.  Thus A is automatically diagonalizable as a 
special case of the second bullet point.

Exercise 6)  How do the examples from today and yesterday compare with the general facts about 
diagonalizability?


