
Math 2250-4
Mon Apr 15
7.4  Mass-spring systems.  

,     On Friday we modeled conservative coupled mass spring systems with n masses, and started 
discussing how to find bases for the 2n-dimensional solution spaces to the resulting system of n second 
order linear homogeneous differential equations

M x## t = K x   0     x## t = A x .
We focused on the case of 2 masses and three springs, 

although in your homework you'll also consider configurations like these:

,     Return to Friday's notes, review the solution algorithm for these second order homogeneous 
undamped systems, and complete Exercises 2 and 3 in those notes.  Then we will test our modeling, with 
the experiment on the next page of today's notes.
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The two mass, three spring system....Experiment!  
Data:  Each mass is 50 grams.  Each spring mass is 10 grams.  (Remember, and this is a defect, our model 
assumes massless springs.)  The springs are "identical", and a mass of 50 grams stretches the spring 15.6 
centimeters.  (We should recheck this since it's last fall's data; we should also test the spring's 
"Hookesiness").  With the old numbers we get Hooke's constant

Digitsd 4 :
solve k$.156 = .05$9.806, k

Here's Maple confirmation for some of our work from Friday's notes:
with LinearAlgebra :

 AdMatrix 2, 2, K
2$k

m ,
k

m ,
k

m ,K
2$k

m ;

 Eigenvectors A ;

A :=

K
2 k
m

k

m

k

m K
2 k
m

K
3 k
m

K
k

m

,
K1 1

1 1

Predict the two natural periods from the model and our experimental value of k, m.  Then make the system 
vibrate in each mode individually and compare your prediction to the actual periods of these two 
fundamental modes.
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ANSWER:  If you do the model correctly and my office data is close to our class data, you will come up 
with theoretical natural periods of  close to .46 and .79 seconds.  I predict that the actual natural periods are
a little longer, especially for the slow mode.  (In my office experiment I got periods of 0.482 and 0.855 
seconds.) What happened?

EXPLANATION:  The springs actually have mass, equal to 10 grams each.  This is almost on the same 
order of magnitude as the yellow masses, and causes the actual experiment to run more slowly than our 
model predicts.  In order to be more accurate the total energy of our model  must account for the kinetic 
energy of the springs.  You actually have the tools to model this more-complicated situation, using the 
ideas of total energy discussed in section 5.6, and a "little" Calculus.  You can carry out this analysis, like I
sketched (but did not discuss in class) for the single mass, single spring oscillator http://www.math.utah.
edu/~korevaar/2250spring13/mar6.pdf, assuming that the spring velocity at a point on the  spring linearly 
interpolates the velocity of the wall and mass (or mass and mass) which bounds it.  It turns out that this 
gives an A-matrix the same eigenvectors, but different eigenvalues, namely

l1 = K
6 k

6 mC 5 ms

l2 = K
6 k

2 mCms
.

(The "M" matrix is not diagonal but the "K" matrix is the same.)

If you use these values, then you get period predictions 
md .05;
 msd .010;
 kd 3.143;

 Omega1d
6$k

6$mC 5$ms ;

 Omega2d
6$k

2$mC ms ;

T1d evalf
2$Pi
Omega1 ;

 T2d evalf
2$Pi
Omega2 ;

m := 0.05
ms := 0.010
k := 3.143

W1 := 7.340

W2 := 13.09
T1 := 0.8559
T2 := 0.4801

of  .856 and .480 seconds per cycle.  Is that closer?



Exercise 2)  Consider a train with two cars connected by a spring:

2a)  Derive the linear system of DEs that governs the dynamics of this configuration (it's actually a special 
case of what we did before, with two of the spring constants equal to zero)
2b).  Find the eigenvalues and eigenvectors.  Then find the general solution.  For l = 0 and its 
corresponding eigenvector v verify that you get two solutions

x t = v  and x t = t v ,
rather than the expected cos w t v,  sin w t v .  Interpret these solutions in terms of train motions.  You 
will use these ideas in some of your homework problems.


