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Today we focus on two important entries in the Laplace transform table: the unit impulse ("delta function")
Laplace transform entry, which is a limit of concentrated step function forcing functions;  and the 
convolution integral entry, which can be applied to give integral formulas that solve all non-homogeneous 
linear differential equations.  The periodic function Laplace table entry can also be useful.

  f t  with   f t % CeM t  F s d
0

N
f t eKs t dt  for s O M    comments

  
u t K a   unit step function   

eKa s

s       for turning components on and 
off at t = a .

     f t K a  u t K a      eKa sF s   more complicated on/off

  d t K a  eKa s    unit impulse/delta "function"

  
0

t
f t g t K t  dt    F s G s

convolution integrals to invert 
Laplace transform products

  f t   with period p    
1

1 K eKps
0

p

f t eKs t dt  
 for periodic forcing which is not 
sinusoidal.

Periodic functions:  Let f t  be periodic with period p, i.e. f tC p = f t  c t.  

Notice that we can decompose f into the sum of a function which equals f on the interval 0, p  and is zero 
on p,N  , with a function that is zero on 0, p  and equals f on p,N : 

f t = f t 1K u tK p C u tK p f t               
= f t 1K u tK p C u tK p f tK p  

(since f is pKperiodic).

If we take the Laplace transform of this identity use the definition of Laplace transform for the first term on
the right and the translation theorem for the second term, we get

F s =
0

p
f t eKs t dtC eKp sF s   

C0 F s 1K eKp s =
0

p
f t eKs t dt  

F s =
1

1K eKp s
0

p

f t eKs t dt  .



Exercise 1)   Find the Laplace transform of the function whose graph is shown below.  The function has 
period 4 :

t
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(solution: F s =
1K eKs

s 1K eK4 s   )

EP 7.6  impulse functions and the d operator.

Consider a force f t  acting on an object for only on  a very short time interval a % t % aC e,  for 
example as when a bat hits a ball.  This impulse p of the force is defined to be the integral

p d
a

a C e
f t  dt 

and it measures the net change in momentum of the object since by Newton's second law
m v# t = f t   

0

a

a C e
m v# t  dt =

a

a C e
f t  dt  = p   

0 m v t
t = a

a C e
= p .

Since the impulse p only depends on the integral of f t , and since the exact form of f is unlikely to be 
known in any case, the easiest model is to replace f with a constant force having the same total impulse, i.e.
to set

f = p d
a, e

t  
where d

a, e
t  is the unit impulse function given by 

d
a, e

t =

0,     t ! a
1
e

,   a % t ! aC e

0,    t R aC e         
  

  .



Notice that 

a

a C e

d
a, e

t  dt =
a

a C e
1
e

 dt = 1 .

Here's a graph of d2, .1 t , for example:
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Since the unit impulse function is a linear combination of unit step functions, we could solve differential 
equations with impulse functions so-constructed.  As far as Laplace transform goes, it's even easier to take 
the limit as e/0 for the Laplace transformsL d

a, e
t s , and this effectively models impulses on very 

short time scales.  

d
a, e

t =
1
e

u tK a K u tK aC e  

0L d
a, e

t s =
1
e

eKa s

s
K

eKa C e s

s
  

= eKa s 1KeKe s

e s
 .

In Laplace land we can use L'Hopital's rule (in the variable e) to take the limit as e/0:

lim
e/ 0

 eKa s 1KeKe s

e s
= eKa s lim

e/ 0

s eKe s

s
= eKa s.

The result in time t space is not really a function but we call it the "delta function" d tK a  anyways, and 
visualize it as a function that is zero everywhere except at t = a, and that it is infinite at t = a in such a way 
that its integral over any open interval containing a equals one.  As explained in EP7.6, the delta "function"
can be thought of in a rigorous way as a linear transformation, not as a function.  It can also be thought of 
as the derivative of the unit step function u tK a , and this is consistent with the Laplace table entries for 
derivatives of functions.  In any case, this leads to the very useful Laplace transform table entry

 d t K a   unit impulse function   eKa s       for impulse forcing
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Exercise 2)  Revisit the swing from Friday and solve the IVP below for x t .  In this case the parent is 
providing an impulse each time the child passes through equilibrium position after completing a cycle.

x## t C x t = .2 p d t C d tK 2 p C d tK 4 p C d tK 6 p C d tK 8 p   
x 0 = 0 

x# 0 = 0 .

with plots :
plot1 d plot .1$t$sin t , t = 0 ..10$Pi, color = black :
 plot2 d plot Pi$sin t , t = 10$Pi ..20$Pi, color = black :
 plot3 d plot Pi, t = 10$Pi ..20$Pi, color = black, linestyle = 2 :
 plot4 d plot KPi, t = 10$Pi ..20$Pi, color = black, linestyle = 2 :
 plot5 d plot .1$t, t = 0 ..10$Pi, color = black, linestyle = 2 :
 plot6 d plot K.1$t, t = 0 ..10$Pi, color = black, linestyle = 2 :
 display plot1, plot2, plot3, plot4, plot5, plot6 , title = `Friday adventures at the swingset` ;

t
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Friday adventures at the swingset

impulse solution: five equal impulses to get same final amplitude of p meters  - Exercise 2:
f d t/.2$Pi$sum Heaviside t K k$2$Pi $sin t K k$2$Pi , k = 0 ..4 :
plot f t , t = 0 ..20$Pi, color = black, title = `lazy parent on Monday` ;
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Or, an impulse at t = 0 and another one at t = 10 p .

g d t/.2$Pi$ 2$sin t C 3$Heaviside t K 10$Pi $sin t K 10$Pi :
plot g t , t = 0 ..20$Pi, color = black, title = `very lazy parent` ;

t
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very lazy parent

Convolutions and solutions to non-homogeneous physical oscillation problems (EP7.6 p. 499-501)  

Consider a mechanical or electrical forced oscillation problem for x t , and the particular solution that 
begins at rest:

a x##C b x#C c x = f t  
x 0 = 0 

x# 0 = 0 .
Then in Laplace land, this equation is equivalent to

a s2 X s C b s X s C c X s = F s  
0 X s a s2 C b s C c = F s  

0 X s = F s $
1

a s2 C b s C c
d F s W s  .

LK1 W s t = w t  is called the weight function for the physical system, and because of the 
convolution table entry

  
0

t
f t g t K t  dt    F s G s

convolution integrals to invert 
Laplace transform products

the solution is given by

x t = f)w t = w)f t =  
0

t
w t f tK t  dt .

This idea generalizes to much more complicated mechanical and circuit systems, and is how engineers 
experiment mathematically with how proposed configurations will respond to various input forcing 
functions, once they figure out the weight function for their system.

The mathematical justification for the convolution table entry is in Friday's notes, for those who wish to 
understand it.
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Exercise 3.  Let's play the resonance game and practice convolution integrals, first with an old friend, but 
then with non-sinusoidal forcing functions.  We'll stick with our earlier swing, but consider various 
forcing periodic functions f t .

x## t C x t = f t  
x 0 = 0 
x# 0 = 0 

a)  Find the weight function w t .
b)  Write down the solution formula for x t  as a convolution integral.
c)  Work out the special case of X s  when f t = cos t , and verify that the convolution formula 
reproduces the answer we would've gotten from the table entry

t
2 k

sin k t   
s

s2 C k2 2   

int cos t $sin tK t , t = 0 ..t ;
 int sin t $cos tK t , t = 0 ..t ;  # convolution is commutative

d)  Then play the resonance game on the following pages with new periodic forcing functions ... 
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We worked out that the solution to our DE IVP will be 

x t =
0

t
sin t f tK t  dt

Since the unforced system has a natural angular frequency w0 = 1 , we expect resonance when the forcing 

function has the corresponding period of  T0 =
2 p
w0

= 2 p.   We will discover that there is the possibility 

for resonance if the period of f is a multiple of T0.  (Also, forcing at the natural period doesn't guarantee 
resonance...it depends what function you force with.)

Example 1)  A square wave forcing function with amplitude 1 and period  2 p.  Let's talk about how we 
came up with the formula (which works until t = 11 p ) .

with plots :

f1 d t/K1C 2$ >
n = 0

10

K1 n$Heaviside tK n$Pi :

 plot1a d plot f1 t , t = 0 ..30, color = green :
 display plot1a, title = `square wave forcing at natural period` ;

t
10 20 30

K1

0

1
square wave forcing at natural period

1)  What's your vote?  Is this square wave going to induce resonance, i.e. a response with linearly growing
amplitude?

x1 d t/
0

t
sin t $f1 tK t  dt :

 plot1b d plot x1 t , t = 0 ..30, color = black :
 display plot1a, plot1b , title = `resonance response ?` ;
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Example 2)  A triangle wave forcing function, same period

f2 d t/
0

t
f1 s  ds K 1.5 :   # this antiderivative of square wave should be triangle wave

 plot2a d plot f2 t , t = 0 ..30, color = green :
 display plot2a, title = `triangle wave forcing at natural period` ;

t
10 20 30K1

0
1

triangle wave forcing at natural period

2)  Resonance?

x2 d t/
0

t
sin t $f2 tK t  dt :

 plot2b d plot x2 t , t = 0 ..30, color = black :
 display plot2a, plot2b , title = `resonance response ?` ;

 

Example 3)  Forcing not at the natural period, e.g. with a square wave having period T = 2 .

f3 d t/K1C 2$>
n = 0

20

K1 n$Heaviside tK n :

 plot3a d plot f3 t , t = 0 ..20, color = green :
 display plot3a, title = `out of phase square wave forcing` ;

t
5 10 15 20K1

0
1

out of phase square wave forcing

3)  Resonance?

x3 d t/
0

t
sin t $f3 tK t  dt :

 plot3b d plot x3 t , t = 0 ..20, color = black :
 display plot3a, plot3b , title = `resonance response ?` ;
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Example 4)  Forcing not at the natural period, e.g. with a particular wave having period T = 6 p .

f4 d t/>
n = 0

10

Heaviside tK 6$ n$p KHeaviside tK 6$nC 1 $p :

 plot4a d plot f4 t , t = 0 ..150, color = green :
 display plot4a, title = sporadic square wave with period 6p ;

t
0 50 100 150

0

1
sporadic square wave with period 6p

4)   Resonance?

x4 d t/
0

t
sin t $f4 tK t  dt :

 plot4b d plot x4 t , t = 0 ..150, color = black :
 display plot4a, plot4b , title = `resonance response ?` ;
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Hey, what happened????  How do we need to modify our thinking if we force a system with something 
which is not sinusoidal, in terms of worrying about resonance?  In the case that this was modeling a swing
(pendulum), how is it getting pushed?

Precise Answer:  It turns out that any periodic function with period P is a (possibly infinite) superposition

of a constant function with cosine and sine functions of periods P,
P
2

,
P
3

,
P
4

,... .  Equivalently, these 

functions in the superposition are 

1, cos w t , sin w t , cos 2 w t , sin 2 w t , cos 3 w t , sin 3 w t ,...  with  ω =
2$p
P

.  This is the 

theory of Fourier series, which you will study in other courses, e.g. Math 3150, Partial Differential 
Equations.  If the given periodic forcing function f t  has non-zero terms in this superposition for which 

n$w = w0 (the natural angular frequency) (equivalently 
P
n

=
2$p
w0

), there will be resonance; otherwise, no

resonance.  We could already have understood some of this in Chapter 5, for example

Exercise 4)  The natural period of the following DE is (still) T0 = 2 p .  Which of the two DE's below will 
have solutions that exhibit resonance?  Use Chapter 5 superposition ideas. Compare your answer with 
how the period of the forcing function compares to the natural period of the system.
a)  

x## t C x t = cos t C sin
t
3

.

b)
x## t C x t = cos 2 t K 3 sin 3 t .


