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Math 2250-4

FINAL EXAM
April 26,2013

This exam is closed-book and closed-note. You may use a scientific calculator, but not one which is
capable of graphing or of solving differential or linear algebra equations. Laplace Transform Tables are
ncluded with this exam. Im order to receive full or partial credit on any problem, you must show all
of your work and justify your conclusions. This exam counts for 30% of your course grade. It has
been written so that there are 150 points possible, and the point values for each problem are indicated in the
right-hand margin. Good Luck!



problem score  possible

1 25
2 10

3 I &

4 I &

5 20

6 20

7 20

8 25
total 150

1) Consider the following linear drag initial value problem:
vi()=-20-2v,

v(0)=0.
1a) Use a phase diagram to determine the limiting velocity tlgnmv(t) for the solution to this TVP.
, ,
Vi) = ~2 v +1o) o matter He valng (5 points)
Vo)
“‘h—%\—o——.{___-o——— ’ thm v ( t) =—\0O
-lo 0=V ' +t o

¢

1b) Solve the initial value problem above. Use the integrating factor method we learned for linear _
differential equations, in Chapter 1. (Your solution should be consistent with the correct answer to part la
above.)

(6 points)
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1c) Re-solve the same [VP,

v'{f)=-20-2vy
v(0)=0,
this time using the method for separable differential equations.
0[. (6 points)
Y = =2 (vilo)
At
AV Lok
Vot lO ‘
Cr nlveiol= 28+ Cy
¢ 2k
exp fvito]= e e
vilo = Ce %t

-
v=—l0o pC et s viy=o S C=1o0 =D v(p)= ~lo+l0e

1d)} How long will it take for the velocity to become 75% of the terminal velomty‘?

Vi = -lo 26=e" 7,wy.L 2';)(4132“13‘))_[,
whonm dres v(E) = 2.5 0 = -58.029)
2t _ o N U
~7.6= -0+ 10€”" = 2.5=10¢
~6,A3

le) Use Newton's Law to convert the following information below into a differential equation initial value
problem - your IVP should end up being equivalent to the IVP you've been working with, if you keep
track of your units correctly. V,=

A cannister is suspended underwater, at the surface of a deep body of water. Aftime #= 0 the cannister j
@ to descend into the depths. %&cmﬁﬁa@m@lmd but because of its

volume it is also subjectto a @ force of 120 poands water. In addition, whil
descending the cannister is subject o a drag force 20 pounds for each foot per second of spegd.

Specifying that "up” is the posmve direction e the [VP for the cannister's velocity after reléase.
(Hint: recall tha

system.)
I 220 (4 points)
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-1 1 0
2) Are 1 ’, I -2, 1 |abasis for R* ? Ifthey are, explain why. If they aren't a basis for R?,
0 1 -1

determine what sort of subspace of > they do span, and find a basis for that subspace.
{10 points)
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3) A focus in this course is a careful analysis of the mathematics and physical phenomena exhibited in
forced and unforced mechanical (or electrical) oscillation problems. Using the mass-spring model, we've
studied the differential equation for functions x(#) solving

mx''+ex'+kx=Fjcos(wt)
with m, k, © > 0; c,F0 > 0.
3a) Explain what each of the letters m, £, ¢ represent in this model. Also give their units in the mks
system.
(6 points)
e = bnasgs ; L{Ndﬁ AxE L(

le = S constant, UWZ\}SM N v kgle>
c ’:*Araw--[)l‘y\j CoaﬁQ‘u‘em'I-/ wnadx W}/S o NS/m

Explain which values of ¢, F,, w lead to the phenomena listed below. Show the form that the key parts of

0!
the solutions x(#) have in those cases, in order that the physical phenomena be present. (We're not
expecting the precise formulas for these parts of the solutions, just what their forms will be.)

3b) pure resonance _
w5 (510D, cx0, 6 o)
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(hrrns ot bl B Esinmyt )
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3d) practical resonance.
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4a) Solve this initial value problem, which could arise from an underdamped mass-spring configuration:

() +2x" (1) +10x(6) =0

x(0)=0
x'(0)=6
— T
{>(ﬂ = ¥ lrzzr; e -
= (0 T
- o va -
P =0 = (TR) +9=0
Y“H') =—9
vl T B3
At I A
EENOE e €V ient + G st t
Koy =0 = = “=0 = KL’E)‘:— 29:. S\‘w"’)t

x(o)= 6= ~¢, +3¢ =2

4b) Expiain how the solution to the second order DE IVP in 4a is related to the solution to the IVP below
for a first order system for functions x,(2), x, (8):
X Tx
X, == 10.1:1 — Zx2 .
P X (0)=0
x,(0)=6
(4 points)

\_fr x (£) sl (o)
o 2= XLE)
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4c) How is the curve on the phase portrait below related to the solution of the IVP in part 4a?
(3 points)
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5a) Re-solve the IVP from 4, using Laplace transforms:
() +2x"(¢) +10x(8) =

x(0) =0
x'(0) =6
O (. ( (12 points)
z N i el
<X () -/Z, b +2 LX) + 1o X()=0
X (o) (*+25 +10) = b
X(H= v =023
s $28+lo G«L\) +C]
=7 W= 2 ejtSfm,%t
Sb) Solve this initial value problem:
Jcos(2f) 0 <2n
() +4x(r) =
0 t=2n
%(0) =0
% (0)=0.
Hint: The forcing function may be written using the unit step function, as 3 cos(2#)(1 —u(t—2=)) .
(8 peints)
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6) Consider the following three-tank configuration. Let tank j have volume Vj (¢ Yand solute amount

x (Hattime 4, forj=1, 2, 3. Well-mixed liquid flows between tanks one and two, with rates ri» ¥y, and

.2,

also between tanks two and three, with rates Py Iy, 88 indicated.

i
-—-a—-@ ‘—3 AP
e A r‘f;—: om—
Vb Vily) Vgl
K %16 £z 1t)

6a) What are the three differential equations that govern the rates of change for the volumes Vi(0), ¥,(1),
V. (1)?
3 V, SR Y,

\//,r+r—i" '(:5

(3 points)
/
V' = 5 Yy

6b) Suppose that all foum\_ -s0 that the volumes in each tank remain
constant. Suppose that these tank volumes age each 100 gallons, “Show that in this case, the differential

equations for the solute amounts reduce to the syste

x (1) -1 1 oll™
L =] 1 -2 1]|x
%, (2) 0 1 -1]1x
(6 points)
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-1 1 0
6¢) The eigendata for the matrix | 1 -2 1 |is

0 1 -1
T
A =0,2=[1,1,1]
T
hy=-1,p=[-1,0,1]
— _ T
hy=-3,2={1,-2,1]

Use this information to write the general solution to the system of differential equations in 6b.

" (5 points)
Xy it} -

‘ [ e-—“: | 14 |
X3 (t) l | |

6d) Solve the initial value problem for the tank problem in 6b, assuming there are initially 10 pounds of
solute in tank 1, 20 pounds in tank 2, and none in tank 3.

(6 points)
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7) Consider the following "train" configuration of 3 masses held together with two springs, with positive
displacements from equilibrium for each car measured to the right, as usual. Notice that this train is not
anchored to any wall,

oy k\ iy k}. Ty,

— — Sy
x4y %1% ®, 1)

7a) Use Newton's law and Hooke's (usual linearization) law to derive the system of 3 second order
differential equations governing the masses' motion. We assume there are no drag forces.

(6 points)
m, x‘//_: by OG- %) = =l x, v ko,

W, ’(7,” = ._)‘{ (’(’L— %) + L‘L(X%Px?—) = klxx '-U(‘H"") > +L(1)(3

l/h.z) )(_5”-:_ -‘l/(l(xg-'xz) - L('L.’(z - [42 ,<3
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7b) Asspme théfzall threé nasses areé'?i‘t}al, 2nd that the two spring constants are also equal. Assume
further that units have been chosen so that the numerical value of m for each mass equals the numerical
value off & for each Hooke's constant. Show that in this case the system in 7a reduces to

x (1) 11 o1l
\ u0 < 12 1]
Eﬁc\llw (1) o 1 -1l
=l <1 (2 points)
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7c) The matrix in 7b is actually the same one that appeared in problem 6. Use that eigendata information,
repeated below, to write down the general solution to the system of second order differential equations in

7b.
A =0p=[1,1,11
A, =-1Ly=[-1,0,17 w=Vt =L
7= AX Ay =-3,2=[1,-2,1] wYrs =13
x ) .
— | (6 points)
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7d) Descrlbe the three "fundamenta modes" for this mass-spring problem. (One of the "modes" doesn't

actually have any oscillations, but instead describes another natural motion that you might expect.)

( ‘ ) (6 points)
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8) Consider the system of differential equations below, which because of the positive xy terms, could be
modeling two symbiotic (beneficial to each other) populations x(¢), y(£):

x'()=4x—2x +xy
' — 2
yg)=4y—y +xy.
8a) The four equilbrium solutions to this system of differential equations are shown on the phase portrait
below. Verify that the equilibrium points are correct, by finding them algebraically from the system above.

O=dy-2x"+ Ky = x(Uc—Zerg) K= O (4 points)
O=fyyrmy=glagn o /g

7
Y =0 >~3+x=0 &/ N
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8b) Classify the equilibrium points [0, 4] and [8, 12] making sure to also indicate their stability
properties. Recall that equilibrium points may be nodal sinks, nodal sources, saddle points, stable centers,

spiral sinks, or spiral sources. For your convenience the system of differential equations is repeated
below.

x'(=dx—2x"+xy =F
y()=dy—y +xy. =G

j(xf?}) = [:“;( Ff - Af_d““j X (8 points)
Gx G?g 7 4‘—2:5&&
j(.OA-): 4¢4 O ] =l {(6 9 ]Q: (‘3,*’1‘ "—“—"—? (Mhs’lw\lg&} Sc\c{o\(i
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8¢) Use eigenvalues and eigenvectors to find the general solution to the linearized system of differential
equations at the equilibrium point [0, 4]T.

. (6 points)
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8d) Use your work from 8¢ to sketch the phase portrait for that linearized system. Your eigenspaces
should show up in this sketch, and the sketch should look like a "magnification" of what happens in the

original phase portrait, near the equilibrium point [0, 47 . m\ﬁ\ﬂ?ﬁ
=5

ree v= L6
=Y ;’-_KD )&

(4 points)
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8e) Using the original phase portrait for x(¢), y(¢) and your analysis of equilibrium solutions, what does it
appear happens to the populations x(#), y(#) as - co, assuming each population was initially positive at

time £=07?
o leoks ke "f”ewjr as lmf\g as (3 points)
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Tabie of Laplace Transforms

ML AST—— S S

“Fhis table summarizes the general properties of Laplace transforms and the Laplace transforms of particular funciions
derived in Chapter 10
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e cos kt
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1 . r
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1 (sin ks + &kt coskr)
uft —a)

80t —a)
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