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Math 2250-4
FINAL EXAM

April26, 2013

This exam is closed-book and closed-note. You may use a scientific calculator, but not one which is
capable of graphing or of solving differential or linear algebra equations. Laplace Transform Tables are
included with this exam. In order to receive full or partial credit on any problem, you must show all
ofyourwork and justiiy your conclusions. This exam counts for 30% of your course grade. It has
been written so that there are 150 points possible, and the point values for each problem are indicated in the
right-hand margin. Good Luck!



problem score possible

1 _______ 25

2 ______ 10

3 _______ 15

4 ______ 15

5 _______ 20

6 _______ 20

7 _______ 20

8 _______ 25

total ________ 150

1) Consider the following linear drag initial value problem:
v’(t) = —20 - 2 v.

v(O)’O.
j~) Use a phase diagram to determine the limiting velocity ~lim v(t) for the solution to this IVP.

v’(4)~ -1(v4lo) ~ ~~ (5pohi~)

~C)

__________ j~’L’... v(t)t_~o

-Ia Qtv

jJ~) Solve the initial value problem above. Use the integrating factor method we learned for linear
differential equations, in Chapter 1. (Your solution should be consistent with the correct answer to part JA
above.)

(6 points)

v~ ~2v t-2o

~ Ljtvt~ ~_loezt

~ vLt) ~—1O ~

~Lo) 2



j~ Re-solve the same IVP,
v’ (t) = -20 - 2 v

v(O) = 0,

this time using the method for separable differential equations.

j~) Use Newton’s Law to convert the following information below into a differential equation initial value
problem - your IVP should end up being equivalent to the IVP you’ve been working with, if you keep
track of your units correctly. V0

A cannister is suspended underwater, at the surface of a dee bod of water. A(j t = 0 the cannister
release to descend into the depths. The-eanniste~6&gj~s 320 pounds on dry land but becauke of its
vo ume it is also subject to a oancy force of 120~wnt~ wa er. In addition, whil~
descending the cannister is sub’ec o a rag force pounds for each foot per second of spe~d.
S eci mg that “up” is the positive direction e e the IVP for the cannister’s velocity after rel~ase.
(Hint: recall tha ry- and weight of 32 ou s = mg corresponds to a mass of 1 slug in the Ejiglish
system.)

3aQ

t.n~J~z) ~32-V

y~Aj- Io

—z~v~o) (6pothts)

~4f

~v~iO\~ ~it ~ C1
C1 -2*

tv+~01t e. .~

v~ —Ic ~Cc2~; vLo~~ ~Ctlo ~ —Lo lot
141 How long will it take for the velocity to become 75% of the terminal velocity?

(4 points)
V~—lo ~Ste

~ v(fl-ThS
-z1 ________

- . =—104- IDe

(4 points)

Vyt~V~t. F -= —

Nt

K —io (3z)

jo~4t)t —lcrD—2~oV
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.—) p_s
‘iv ~

1-111 ii F ol
~ Are 1 L -2 , I a basis for ~? Ifthey are, explain why. If they aren’t a basis for ~,

[oj[ iji~j
determine what sort of subspace of D~ they do span, and fmd a basis for that subspace.

(10 points)

-L U -t (fl f~t 0

pp j~j~

~

~0_~ ~ -‘
o -ii
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3) A focus in this course is a careful analysis of the mathematics and physical phenomena exhibited in
forced and unforced mechanical (or electrical) oscillation problems. Using the mass-spring model, we’ve
studied the differential equation for functions x(t) solving

mx’’ + cx’ + kx=F0 cos(cot)

withm,k,w>O; c,F0≥O.

3~) Explain what each of the letters m, k, c represent in this model. Also give their units in the inhs
system.

(6 points)
~is o~j-t

~ L~7~
~ t0e f~’es4, u~tnh L~4 ct

Explain which values of c, F0, co lead to the phenomena listed below. Show the form that the key parts of

the solutions x( t) have in those cases, in order that the physical phenomena be present. (We’re not
expecting the precise formulas for these parts of the solutions, just what their forms will be.)

~J2) pure resonance

~ (3pothts)

£ CA~c~f ~
~x~f~,Lt &~ci’~t)

C -~‘ka~o~ occ.’tta{~iv~-s~
jg)beating (3

(3 points)

Sttpvffvs4a-~ ~B r~vr~i_ &s—cos~f)

3~j) practical resonance.

c.to bn..4-c>o (3points)

KscW~ of la~y”

C cos(wf~ct)
t

a4-% JrQsO~-Rittc 5

Cs t&ct\ C~CG~’) ko~s ct

v7t{u~L f~u L~J)6 C~s o~patcUl c~jmato)



4~) Solve this initial value problem, which could arise from an underdamped mass-spring configuration:

x’’ (t) + 2x’ (t) + lOx(s) = 0
x(0)0
x’(O)6

K’(O~t~~ —C1 *-3~
—

4k) Explain how the solution to the second order DE IVP in 4a is related to the solution to the 1VP below
for a first order system for functions x1 (5), x2 (1):

xl ‘=x2

x21-10x1 —2x2

x1(O) =0

x2(O) = 6

q

K~) 0

10

~9.
c?

rk-i 2

21 ±~C

(8 points)

+

K1~ ≤,Ev.cs C°-)
x~~tt xi~~
~11fl~- x’rE)

(4 points)

I~1

(S~~~

S~

Lsw
ivP
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4~) How is the curve on the phase portrait below related to the solution of the IVP in part 4a?

CurvL~ [u~ tjLs*’0L sLcnj-~
~ F Lv~J

~f~t ~oc~n~ c~J
CA.≤ 4~ r0~svt~t$.

cnç~J4 4i~, ~k
Ki*) 1AJ~~

i•~.~~2-

(3 points)

xrn2

V

-NH

[~utfl (ctcrt4 ~))
(~Q~f ,d4) ~L+Lcsr

4-~c sw€1~- ~

4~AA5 Sf’~raJ1 C~rt4

V5

7



Re-solve the IVP from 4, using Laplace transforms:
x’’(t) +2x’() + lOx(t) =0

x(0)0
x’ (0) = 6

0 (12 points)

s~X(c) ~/q, ~iCsX&) flO X(c~to

xG (22 +10) G
~

2 2

~ Solve this initial value problem:

3cos(2t) 0≤t<2ic
-

0 t≥2n
x(0)=0

x’(O) =0.
Hint: The forcing function may be written using the unit step fUnction, as 3 cos (2 1) (1 — u( t — 2 it))

(8 points)

,c’~ ~x S ~c2t —~(~c)~(t-z~)
23 c-os2+~ ~ c-cs(2zi)~.U--lft) ≤~~ict4cc ~S

~ pu\40ct f~

~) ~ -~t~s—3e ..i.....ç’2-4~9 5z41
-lit s

Yts) 3 L_ —3e S
~

~kt ts

~(t-li~) ~~in)
~j4-o~ }ft-c~) e~ Rc)

-Zn))

i~c~2t~
‘9 tr-~r~ç

sc~t

~
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~) Consider the following three-tank configuration. Let tank] have volume ~ (t ) and solute amount
.~ (t)at time 4 for] = 1, 2, 3. Well-mixed liquid flows between tanks one and two, with rates r1, r2, and

also between tanks two and three, with rates r3, r4 , as indicated.

Va4~ ‘4(t) V3 ~.±)

~) What are the three differential equations that govern the rates of change for the volumes V1 (t), V~ (t),

(3points)

~
I,

~) Suppose that all fou~es are 100 ga~ , that the volumes in each tank remain
constant. Suppose that these tank vo uines e each 100 gallons. ow that in this case, the differential
equations for the solute amounts reduce to the sys e

x1(t) —1 1 0 x1

x2’(t) 1 -2 1 X2

x3(t) 0 1 -1

(6 points)

~ ~ V
~ ~ — ~ ~ z~ ~

t

KIt ~ ~2- -r - li-u X%
Vt “Vz.
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-1 1 01

~) The eigendata for the matrix 1 -2 1 is

0 1 —ij
= 0,j~= [1,1, 11T

X21,v [-1,0, 11T

2~3 =-3,v= [1,-2, 11T

Use this information to write the general solution to the system of differential equations in ~.

(5 points)

g2~’ I f~C j~ -zj
[x3u;J L~ j L1J

~) Solve the initial value problem for the tank problem in ~ assuming there are initially 10 pounds of
solute in tank 1,20 pounds in tank 2, and none in tank 3.

(6 points)

-zt ~(1l1
I ~ Li
L X~to) ~ L° J

—‘ i ~0
C -2. 20

- c
-5—I I

—Q~i-t4 0 I —3 ~o s.o

a I 0 5 ~Se I~I

O 2 0 ~

-36 rjI ~
~l —i

o -~ ~ LI LU
c~j~-l t @ftb xt(O4S5tI~

O ‘0-3
,(

Q&J~ {~k1t
L I to ~

/
e~ 0 . j 1’

o o ~ i~c
o ~ ~poh~vnZ5 1
0 0 ~



2) Consider the following train’ configuration of 3 masses held together with two springs, with positive
displacements from equilibrium for each car measured to the right, as usual. Notice that this train is not
anchored to any wall.

ht1 ~ ~‘~Z -

~-4 ‘ , ..~

xj4) x~t)

h) Use Newton’s law and Hookes (usual linearization) law to derive the system of 3 second order
differential equations governing the masses’ motion. We assume there are no drag forces.

(6 points)
-z -= —L~x i

ki~ —L1 (ç— x1~ ~ ~ ~

~;X~t ~

( x:’t —~,
UL. ~ i’-. k~ - /L.,

7.. - — K - ~Il~%Lf r — ‘3\ -~d ,, ~ I V’2— L

2k) Assj{n~ie tl~alf thre≤’ sar~ilaC~nd that the two spring constants are also equal. Assume
further t~at units have been chosen so that the numerical value of m for each mass equals the numerical
value o k for each Hooke’s constant. Show that in this case the system in h reduces to

5 (2 points)

x1 ‘‘(t)

x2 ‘‘(t)

11



2c.~ The matrix in 7b is actually the same one that appeared in problem 6. Use that eigendata information,
repeated below, to write down the general solution to the system of second order differential equations in

A~ =O,~= [1,1, 11T

~lv=[~lo 11T ~

—i/f -Jx tAx ~33,~=[l,_2,l]T ~
(6 points)

i~ ~ s(~wt~s~ t~
2 I AJ

—~ ~ L v ~ , _~t≤~$~

_~tV t-f\~,
÷~ H]—i ~ .~ [x)[~

rç A~oc~t&2-l--

~ X~tQ 0CM~
-JAct~cit)v~ 4~*-c~~)Av 0

11) Describe the”ffi7ree “fundament~i modes” for this mass-spring problem. (One of the “modes” doesn’t
actually have any oscillations, but instead describes another natural motion that you might expect.)

(6 points)

C~tC~C5t~~O (c~~ç~)
CI ~

cL~u, ~‘fl~t(5
U’

fl’~ I k~-.tOLC.~Lt Vkt-O &U.. ‘

• stctc~ ~O

C ~s (~-~) Hi
1° Ytc4. 5~jJL~5

L b&~L1~~~
&~pLbJ~- ~u4- ~a~pL~&t
~~ ~si

C, t

t&sh~ I’

ii cw’~c i-IsC~s(~f~
a~ ~)~LA~C~2)

fL a~i~pL4.~4~ cts 12



~) Consider the system of differential equations below, which because of the positive xy terms, could be
modeling two symbiotic (beneficial to each other) populations x(t),y(t):

x’(t)4x—2x2+xy
y’(t)4y—y2 +xy.

&) The four equilbrium solutions to this system of differential equations are shown on the phase portrait
below. Verify that the equilibrium points are correct, by finding them algebraically from the system above.

(4points)
4-ZxO

A 4 Z
01 tjb -~-j1~

x=4x-2x 2+xy -

v =4y-y 2.-xy

20 -1’ I

1 .‘ _K4jt4.

Is 4 S

- ~ -, ~. --H
-1 !.

i.- - :1
LJV -- H - :.-

1,..~

13



£k~. Classi~’ the equilibrium points [0, 4]Tand [8, l2]~ making sure to also indicate their stability
properties. Recall that equilibrium points may be nodal sinks, nodal sources, saddle points, stable centers,
spiral sinks, or spiral sources. For your convenience the system of differential equations is repeated
below.

x’(t)=4x—2x2 +xy F
y’(t)4y—y2+xy.

~ 1 r4-4~~
~ [~~4

H

fl~L4 2~

I -~ 2 (~*3)(~+~) -G

I ~
•;kt≤E- ?3t7ItG (‘~i-&)ftt~)

SQ 1-&i’~ k~A4Jl-t~ L~5 q~ft4~vzjc&t5

ftk~ct 4 +~h—tS 4-L\ 4p.~
—— k1M S2a~7.~\jz~[LJS -4c~( -~ 1~

~ç) Use eigenvalues and eigenvectors to find the general solution to the linearized system of differential
equations at the equilibrium point [0, 4ff.

(6 points)

~Lv’, - L÷ ii

0

0 ()

0

(8 points)

‘SI

2’

4-29 4-e

1
s~JLl2

c~C
LvwJ L~i

o Oo
+~ I~ C)

.1-

c)

t2 C) ~

4—c) C)

-I- C~ C

4

C

d

j7
U
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~L0 L~-k~ ~~aL ±L~
+~Ja~~ xLfl—3Z

Lç~0to ~i-~-j(fi—34--

~çfl~ Use your work from 8c to sketch the phase portrait for that linearized system. Your eigenspaces
should show up in this sketch, and the sketch should look like a ‘magnification” of what hapj~ens in the
original phase portrait, near the equilibrium point [0, 4 ]~ 5

—, [~\ (4points)

~-i

zEr 9
~c~e 131

L’i
*t1b[o1~\

0.4

0.4

Using the original phase portrait for x(t),y(t) and your analysis of equilibrium solutions, what does it
appear happens to the populations x(t),y(t) as t—÷ ~, assuming each population was initially positive at
time t = 0?

~- jiyukc LIc~ t&~1- o..s

~ L~wJ Ut -

-~~4 ~t4),~t+)
1~

(3 points)

‘5



Table of Laplace Transforms
This table summarizes the genera] properties of Laplace transforms and the Laplace transforms of particular functions
derived in Chapter 10.

f(t) F(s)

off!) + bg(t) oF(s) + hG(s)

f’Q) sF(s)—f(0) coskt

f”(t) s’F(s) —sf(0) — f’(O) sink! k

s’F(s) — r1f(O) — . — f~”(O) cosh ki

ff(r)dr sinhkl

e°fQ) F(s —a) e’ cosk! ~(s—a) +K~

uQ — a)fQ —a) C’F(s) ?‘siukt k(s — a)’ +k

f f(r)gQ — r)dT F(s)G(s) ~(sinkt — ktcoskr)

—F(s) ksinkt (s’+k~2

t~f(t) ~(sinkt+ktcoski)

— I F(u)du uQ—a) - —
I is S

fQ), period p 1 fr5’fQ)dt SQ — a)

/ I as
— (—I) ‘‘~ (square wave) — tanh —

5 s 2

[~]I (staircase)52 a s(l —

nt
jfl —

5j74-I

I 1
4
r(a +1)

I”
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