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Name.........................................................................................

I.D. number................................................................................

Math 2250-4
FINAL EXAM

April 26, 2013

     This exam is closed-book and closed-note.  You may  use a scientific calculator, but not one which is 
capable of graphing or of solving differential or linear algebra equations.  Laplace Transform Tables are 
included with this exam.  In order to receive full or partial credit on any problem, you must show all 
of your work and justify your conclusions.  This exam counts for 30% of your course grade.  It has 
been written so that there are 150 points possible, and the point values for each problem are indicated in the
right-hand margin.  Good Luck!
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problem        score       possible

1           _______        25

2           _______        10

3           _______        15

4           _______        15

5           _______        20

6           _______        20

7           _______        20

8           _______        25

total       ________      150

1)  Consider the following linear drag initial value problem:
v# t = K20 K 2 v .

v 0 = 0 .
1a)  Use a phase diagram to determine the limiting velocity lim

t/N
v t  for the solution to this IVP.

(5 points)

1b)  Solve the initial value problem above.  Use the integrating factor method we learned for linear 
differential equations, in Chapter 1.  (Your solution should be consistent with the correct answer to part 1a 
above.)

(6 points)
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1c)  Re-solve the same IVP, 
v# t = K20 K 2 v 

v 0 = 0 ,

this time using the method for separable differential equations.
(6 points)

1d)  How long will it take for the velocity to become 75% of the terminal velocity?
(4 points)

1e) Use Newton's Law to convert the following information below into a differential equation initial value 
problem - your IVP should end up being equivalent to the IVP you've been working with, if you keep 
track of your units correctly.

A cannister is suspended underwater, at the surface of a deep body of water.  At time t = 0 the cannister is 
released, to descend into the depths.  The cannister weighs 320 pounds on dry land but because of its 
volume it is also subject to a buoancy force of 120 pounds when underwater. In addition, while 
descending the cannister is subject to a drag force of 20 pounds for each foot per second of speed.  
Specifying that "up" is the positive direction, derive the IVP for the cannister's velocity after release.  
(Hint: recall that a dry-land weight of 32 pounds = mg corresponds to a mass of 1 slug in the English 
system.)

(4 points)
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2)  Are  

K1

1

0
,

1

K2

1
,

0

1

K1
 a basis for =3 ?   If they are, explain why.  If they aren't a basis for =3, 

determine what sort of subspace of =3 they do span, and find a basis for that subspace. 
(10 points)
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3)  A focus in this course is a careful analysis of the mathematics and physical phenomena exhibited in 
forced and unforced mechanical (or electrical) oscillation problems.  Using the mass-spring model, we've 
studied the differential equation for functions x t  solving

m x##C c x#C k x = F0 cos w t

with m, k, wO 0;  c, F0 R 0.
3a)  Explain what each of the letters m, k, c represent in this model.  Also give their units in the mks 
system.

(6 points)

Explain which values of c, F0, w lead to the phenomena listed below.  Show the form that the key parts of 
the solutions x t  have in those cases, in order that the physical phenomena be present.  (We're not 
expecting the precise formulas for these parts of the solutions, just what their forms will be.)

3b)  pure resonance
(3 points)

3c)  beating
(3 points)

3d)  practical resonance.
(3 points)
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4a)   Solve this initial value problem, which could arise from an underdamped mass-spring configuration:

x## t C 2 x# t C 10 x t = 0 
x 0 = 0
x# 0 = 6

(8 points)

4b)  Explain how the solution to the second order DE IVP in 4a is related to the solution to the IVP below 
for a first order system for functions x1 t , x2 t :

x1 #= x2 
x2 #=K10 x1 K 2 x2 .

x1 0 = 0 
x2 0 = 6 

(4 points)
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4c) How is the curve on the phase portrait below related to the solution of the IVP in part 4a?
(3 points)

 



8

5a)  Re-solve the IVP from 4, using Laplace transforms:
x## t C 2 x# t C 10 x t = 0 

x 0 = 0
x# 0 = 6

(12 points)

5b)  Solve this initial value problem:

x## t C 4 x t =
3 cos 2 t 0 % t! 2 p

0 tR 2 p
 

x 0 = 0
x# 0 = 0 .

Hint:  The forcing function may be written using the unit step function, as 3 cos 2 t 1K u tK 2 p  .
(8 points)
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6)  Consider the following three-tank configuration.  Let tank j have volume Vj t and solute amount 
xj t at time t, for j = 1, 2, 3.  Well-mixed liquid flows between tanks one and two, with rates r1, r2, and 
also between tanks two and three, with rates r3, r4 , as indicated.

6a)  What are the three differential equations that govern the rates of change for the volumes  V1 t ,  V2 t ,
V3 t ?

(3 points)

6b)  Suppose that all four flow rates are 100 gallons/hour, so that the volumes in each tank remain 
constant.  Suppose that these tank volumes are each 100 gallons.  Show that in this case, the differential 
equations for the solute amounts reduce to the system

x1 # t

x2 # t

x3 # t

=

K1 1 0

1 K2 1

0 1 K1
 

x1
x2
x3

  

(6 points)



10

6c)  The eigendata for the matrix 

K1 1 0

1 K2 1

0 1 K1
 is 

l1 = 0, v = 1, 1, 1 T  

l2 =K1, v = K1, 0, 1 T  

l3 =K3, v = 1,K2, 1 T  

Use this information to write the general solution to the system of differential equations in 6b.
(5 points)

6d) Solve the initial value problem for the tank problem in 6b, assuming there are initially 10 pounds of 
solute in tank 1, 20 pounds in tank 2, and none in tank 3.

(6 points)
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7)  Consider the following "train" configuration of 3 masses held together with two springs, with positive 
displacements from equilibrium for each car measured to the right, as usual.  Notice that this train is not 
anchored to any wall.

7a) Use Newton's law and Hooke's (usual linearization) law to derive the system of 3 second order 
differential equations governing the masses' motion.  We assume there are no drag forces.

(6 points)

7b)  Assume that all three masses are equal, and that the two spring constants are also equal.  Assume 
further that units have been chosen so that the numerical value of m for each mass equals the numerical 
value of k for each Hooke's constant.  Show that in this case the system in 7a reduces to

 x1 ## t

 x2 ## t

 x3 ## t

=

K1 1 0

1 K2 1

0 1 K1
 

x1
x2
x3

 .

(2 points)
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7c) The matrix in 7b is actually the same one that appeared in problem 6. Use that eigendata information, 
repeated below, to write down the general solution to the system of second order differential equations in
7b.  

l1 = 0, v = 1, 1, 1 T  

l2 =K1, v = K1, 0, 1 T  

l3 =K3, v = 1,K2, 1 T  
(6 points)

7d)  Describe the three "fundamental modes" for this mass-spring problem.  (One of the "modes" doesn't 
actually have any oscillations, but instead describes another natural motion that you might expect.)

(6 points)
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8)  Consider the system of differential equations below, which because of the positive xy terms, could be 
modeling two symbiotic (beneficial to each other) populations x t , y t :

x# t = 4 xK 2 x2 C x y 
y# t = 4 yK y2 C x y.

8a)  The four equilbrium solutions to this system of differential equations are shown on the phase portrait 
below.  Verify that the equilibrium points are correct, by finding them algebraically from the system above.
 

(4 points)
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8b)  Classify the equilibrium points 0, 4 T and 8, 12 T, making sure to also indicate their stability 
properties.  Recall that equilibrium points may be nodal sinks, nodal sources, saddle points, stable centers, 
spiral sinks, or spiral sources.  For your convenience the system of differential equations is repeated 
below.  

x# t = 4 xK 2 x2 C x y 
y# t = 4 yK y2 C x y.

(8 points)

8c)  Use eigenvalues and eigenvectors to find the general solution to the linearized system of differential 
equations at the equilibrium point 0, 4 T.

(6 points)
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8d)  Use your work from 8c  to sketch the phase portrait for that linearized system.  Your eigenspaces 
should show up in this sketch, and the sketch should look like a "magnification" of what happens in the 
original phase portrait, near the equilibrium point 0, 4 T.

(4 points)

K0.4 K0.2 0 0.2 0.4

K0.4

K0.2

0.2

0.4

8e)  Using the original phase portrait for x t , y t  and your analysis of equilibrium solutions, what does it
appear happens to the populations x t , y t  as t/N, assuming each population was initially positive at 
time t = 0 ?

(3 points)
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