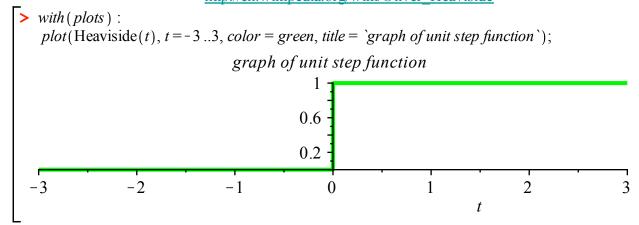
Today and Monday we'll discuss interesting applications of Laplace transforms to differential equations, using sections 10.4,10.5,EP7.6. The new table entries we'll focus on are

$f(t)$ with $ f(t) \le Ce^{Mt}$	$F(s) := \int_0^\infty f(t)e^{-st} dt \text{ for } s > M$	comments
u(t-a) unit step function	$\frac{e^{-as}}{s}$	for turning components on and off at $t = a$.
$f(t-a)\ u(t-a)$	$e^{-as}F(s)$	more complicated on/off
$\delta(t-a)$	e^{-as}	unit impulse/delta "function"
$\int_0^t f(\tau)g(t-\tau)\ d\tau$	F(s)G(s)	convolution integrals to invert Laplace transform products
f(t) with period p	$\frac{1}{1-e^{-ps}}\int_0^p f(t)e^{-st}dt$	for periodic forcing which is not sinusoidal.

The unit step function with jump at t = 0 is defined to be

$$u(t) = \begin{cases} 0, \ t < 0 \\ 1, \ t \ge 0 \end{cases}.$$

Its graph is shown below. Notice that this function is called the "Heaviside" function in Maple, after the person who popularized it (among a lot of other accomplishments) and not because it's heavy on one side. http://en.wikipedia.org/wiki/Oliver Heaviside

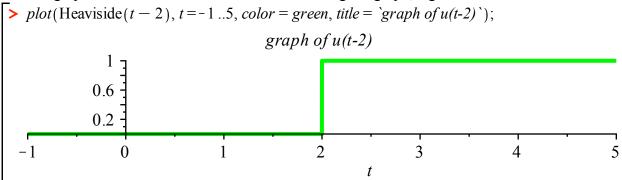


Notice that technically the vertical line should not be there - a more precise picture would have a solid point at (0, 1) and a hollow circle at (0, 0), for the graph of u(t). In terms of Laplace transform it doesn't actually matter what we define u(0) to be.

Then

$$u(t-a) = \begin{cases} 0, \ t < a \\ 1, \ t \ge a \end{cases}$$

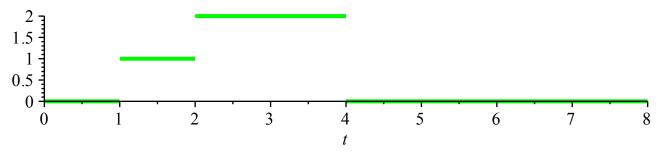
and has graph that is a horizontal translation of the original graph, e.g. for a = 2:



Exercise 1) Verify the table entries

u(t-a) unit step function	$\frac{e^{-a s}}{s}$	for turning components on and off at $t = a$.
$f(t-a)\ u(t-a)$	$e^{-as}F(s)$	more complicated on/off

Exercise 2) Consider the function f(t) which is zero for t > 4 and with the following graph. Use linearity and the unit step function entry to compute the Laplace transform F(s).



Set up: an under-employed mathematician/engineer/scientist
(your choice)

likes to take his/her child to the surings...

recall pendulum (linearized) egth, unthout forcing, for
$$\theta = \theta(t)$$

L $\theta'' + q \theta = 0$

---> mx"+ mg x = Fo coswt — parent forcing (?!)

x.

x(t)=Lsin $\theta(t)$ ---> x"+ q x = Fo coswt

be for small θ x"+ θ x = Fo coswt

x"+ θ x = Fo coswt

x"+ θ x = Fo coswt

parent pushes sinusoidally for construct swing with L=g x 9.8 m. so θ = 1, To = 2x 26.2 seconds with Fo = .2 and then releases:

Exercise 3a) Explain why the description above leads to the differential equation initial value problem for x(t)

$$x''(t) + x(t) = .2 \cos(t) (1 - u(t - 10 \pi))$$

 $x(0) = 0$
 $x'(0) = 0$

3b) Find x(t). Show that after the parent stops pushing, the child is oscillating with an amplitude of exactly π meters.

Pictures for the swing:

```
> plot1 := plot(.1 \cdot t \cdot \sin(t), t = 0..10 \cdot \text{Pi}, color = black):
    plot2 := plot(Pi \cdot sin(t), t = 10 \cdot Pi ... 20 \cdot Pi, color = black):
    plot3 := plot(Pi, t = 10 \cdot Pi ... 20 \cdot Pi, color = black, linestyle = 2):
    plot4 := plot(-Pi, t = 10 \cdot Pi ... 20 \cdot Pi, color = black, linestyle = 2):
    plot5 := plot(.1 \cdot t, t = 0..10 \cdot Pi, color = black, linestyle = 2):
    plot6 := plot(-.1 \cdot t, t = 0..10 \cdot Pi, color = black, linestyle = 2):
    display({plot1, plot2, plot3, plot4, plot5, plot6}, title = `adventures at the swingset`);
                                         adventures at the swingset
          3 -
          2
          1
          0
                                                  8|\pi
                                                                    12\pi
                                                                                                           20\pi
                                                          10\pi
                                                                                                 18\pi
                                        6|\pi
                                                                              14 \pi
                                                                                       16 π
        - 1
        -3 -
```

Alternate approach via Chapter 5:

step 1) solve

$$x''(t) + x(t) = .2 \cos(t)$$

 $x(0) = 0$
 $x'(0) = 0$

for $0 \le t \le 10 \,\pi$.

step 2) Then solve

$$y''(t) + y(t) = 0$$

 $y(0) = x(10 \pi)$
 $y'(0) = x'(10 \pi)$

and set x(t) = y(t - 10) for t > 10.

<u>Laplace transform convolution</u>

For Laplace transforms the convolution of f and g is defined to be

$$f*g(t) := \int_0^t f(\tau)g(t-\tau) d\tau.$$

Exercise 4) Show f*g(t) = g*f(t) by doing a change of variables in the convolution integral.

$$\int_0^t f(\tau)g(t-\tau) d\tau$$
 F(s)G(s) convolution integrals to invert Laplace transform products

Exercise 4) Verify that the convolution integral table entry is correct, for

$$f(t) = \sin(t) F(s) = \frac{1}{s^2 + 1}$$

$$g(t) = \cos(t) G(s) = \frac{s}{s^2 + 1}$$

$$f*g(t) F(s)G(s) = \frac{s}{(s^2 + 1)^2}.$$

Hint: you might use the trig identity

$$\sin(\tau)^2 = \frac{1 - \cos(2\tau)}{2} .$$

proof of convolution theorem:
(is a good review of iterated integrals)

 $\begin{array}{l}
\mathcal{L}\left\{f*g\right\}(s) = \int_{0}^{\infty} e^{-st} \left(\int_{0}^{t} f(\tau) g(t-\tau) d\tau\right) d\tau \\
= \int_{0}^{\infty} \int_{0}^{t} e^{-st} f(\tau) g(t-\tau) d\tau dt
\end{array}$

integration 1

interchange limits:

$$\int_{0}^{\infty} \int_{\tau}^{\infty} e^{st} f(\tau) g(t-\tau) dt d\tau$$

=
$$\int_{0}^{\infty} \int_{\tau}^{\infty} e^{-sT} f(\tau) e^{-s(t-\tau)} dt d\tau$$
 (pattern recognition)

$$= \int_{0}^{\infty} e^{-st} \int_{t}^{\infty} \left[\int_{t}^{\infty} e^{-s(t-\tau)} \int_{t}^{\infty} (t-\tau) dt \right] d\tau$$

$$= \int_{0}^{\infty} e^{-st} \int_{t}^{\infty} \left[\int_{0}^{\infty} e^{-st} \int_{t}^{\infty} dt dt \right] d\tau$$

G(s)

$f(t)$, with $ f(t) \le Ce^{Mt}$	$F(s) := \int_0^\infty f(t)e^{-st} dt \text{ for } s > M$	↓ verified
$c_1 f_1(t) + c_2 f_2(t)$	$c_1 F_1(s) + c_2 F_2(s)$	
1	$\frac{1}{s}$ $(s>0)$	
t	$\frac{1}{s} \qquad (s > 0)$ $\frac{1}{s^2}$ $\frac{2}{s^3}$	
t^2	$\frac{2}{s^3}$	
$t^n, n \in \mathbb{N}$	$\frac{n!}{s^{n+1}}$	
$e^{\alpha t}$	$\frac{1}{s-\alpha} (s > \Re(a))$	
$\cos(k t)$	$\frac{s}{s^2 + k^2} (s > 0)$ $\frac{k}{s^2 + k^2} (s > 0)$	
$\sin(kt)$	$\frac{k}{s^2 + k^2} (s > 0)$	
$\cosh(k t)$	$\frac{s}{s^2-t^2}$ $(s>k)$	
$\sinh(k t)$	$\frac{k}{s^2 - k^2} (s > k)$	
$e^{at}\cos(kt)$	$\frac{(s-a)}{(s-a)^2+k^2} (s>a)$	
$e^{at}\sin(kt)$	$\frac{\frac{(s-a)}{(s-a)^2 + k^2}}{\frac{k}{(s-a)^2 + k^2}} (s > a)$	
$e^{at}f(t)$	F(s-a)	
u(t-a)	$\frac{e^{-as}}{s}$	
$f(t-a) u(t-a) \\ \delta(t-a)$	$e^{-a} {}^{s}F(s)$ $e^{-a} {}^{s}$	
f'(t) $f''(t)$	s F(s) - f(0) $s^2 F(s) - s f(0) - f'(0)$	
$f^{(n)}(t), n \in \mathbb{N}$ $\int_{0}^{t} f(\tau) d\tau$	$s^{n} F(s) - s^{n-1} f(0) - \dots - f^{(n-1)}(0)$ $F(s)$	
30	S	
$ \begin{array}{c} t f(t) \\ t^2 f(t) \\ t^n f(t), n \in \mathbb{Z} \end{array} $	$ \begin{array}{c} -F'(s) \\ F''(s) \\ (-1)^n F^{(n)}(s) \end{array} $	
$t^{n} f(t), n \in \mathbb{Z}$ $\frac{f(t)}{t}$	$\int_{s}^{\infty} F(\sigma) d\sigma$	
$t\cos(kt)$	$\frac{s^2-k^2}{(s^2+k^2)^2}$	
1	(S + K)	1

$\frac{1}{2k}t\sin(kt)$ $\frac{1}{2k^3}(\sin(kt) - kt\cos(kt))$	$\frac{\frac{s}{(s^2 + k^2)^2}}{\frac{1}{(s^2 + k^2)^2}}$	
$t e^{a t}$ $t^n e^{a t}, n \in \mathbb{Z}$	$\frac{\frac{1}{(s-a)^2}}{\frac{n!}{(s-a)^{n+1}}}$	
$\int_0^t f(\tau)g(t-\tau)\ d\tau$	F(s)G(s)	
f(t) with period p	$\frac{1}{1-e^{-ps}}\int_0^p f(t)e^{-st}dt$	

Laplace transform table