
Math 2250-4
Numerical Solutions to first order Differential Equations

January 31, 2012

     You may wish to download this file from our class homework or lecture page, or by directly opening 
the URL 

http://www.math.utah.edu/~korevaar/2250spring12/jan31.mw
 

from Maple.  It contains discussion and Maple commands which will help you with your Maple/Matlab 
work this week, in addition to our in-class discussions.
     In this handout we will study numerical methods for approximating solutions to first order differential 
equations. Later in the course we will see how higher order differential equations can be converted into 
first order systems of differential equations.   It turns out that there is a natural way to generalize what we 
do now in the context of a single first order differential equations, to systems of first order differential 
equations.  So understanding this material will be an important step in understanding numerical solutions 
to higher order differential equations and to systems of differential equations.
     We will be working through material from sections 2.4-2.6 of the text.

Euler's Method:
     The most basic method of approximating solutions to differential equations is called Euler's method, 
after the 1700's mathematician who first formulated it.  If you want to approximate the solution to the initial
value problem 

dy
dx

= f x, y

y x0 = y0 ,
first pick a step size h.  Then for x between x0 and x0 C h, use the constant slope f x0, y0 .  At x-value 
x1 = x0 C h your y-value will therefore be y1 := y0 C f x0, y0  h.  Then for x between x1 and x1 C h you 
use the constant slope f x1, y1 , so that at x2 := x1 C h your y-value is y2 := y1 C f x1, y1  h.  You 
continue in this manner.  It is easy to visualize if you understand the slope field concept we've been talking 
about; you just use the slope field with finite rather than infinitesimal stepping in the x-variable.  You use 
the value of the slope field at your current point to get a slope which you then use to move to the next 
point.  It is straightforward to have the computer do this sort of tedious computation for you.  In Euler's 
time such computations would have been done by hand!
     A good first example to illustrate Euler's method is our favorite DE from the time of Calculus, namely 
the initial value problem

dy
dx

= y

y 0 = 1.
We know that  y = ex is the solution. Let's take h = 0.2 and try to approximate the solution on the x-interval 
0, 1 .  Since the approximate solution will be piecewise linear, we only need to know the approximations 

at the discrete x values x = 0,  0.2, 0.4, 0.6, 0.8, 1.0.  I've drawn a picture on the next page with 
appoximated x, y  points and the exact the solution graph.  Use the empty space to fill in the hand-
computations which produce these y values and points.   Then compare to the ``do loop'' computation 
directly below.
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Class exercise 1:  Hand work for the approximate solution to 
dy
dx

= y

y 0 = 1
on the interval 0, 1 , with n = 5 subdivisions and h = 0.2, using Euler's method.

Class exercise 2:  Why are your approximations too small in this case?
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Here is the automated computation:
restart : # clear any memory from earlier work
Digits d 5 :
x0 d 0.0; xn d 1.0; y0 d 1.0;  #starting and end points, initial y-value

n d 5; h d
xnK x0

n
;  #number of steps, and step-size

f d x, y /y;  #slope field function for our DE
x d x0; y d y0;  #initialize for the iteration loop below
for i from 1 to n do
          k d f x, y ;  #current slope,use: to suppress output
          y d y C h * k; #new y value via Euler
          x d x C h;   #updated x-value:
          print x, y, exp x ;  
             #display current values, 
 end do:     # how to end an iteration loop

Notice your approximations are all a little too small, in particular your final approximation 2.488... is short 
of the exact value of exp 1 = 2.71828.  Did you figure out why?
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   The following commands created that graph on page 2.  For fun, you might want to try understanding 
and executing them yourself, although for the purposes of our discussion their only purpose is to create the
display, and to illustrate the use of a conditional "if then" construction.

restart:   #clear all memory
Digits:=6:
with(plots): #load plotting library
with(LinearAlgebra): #Linear Algebra library
f:=(x,y)->y:    
   #this is the "slope" function f(x,y) 
   #in dy/dx = f(x,y).  We want dy/dx = y.

n:=5:h:=1/n:x0:=0:y0:=1: #initialize
xval:=Vector(n+1):yval:=Vector(n+1):  
   #to collect all our points
xval[1]:=x0: yval[1]:=y0:        
   #initial values

  #paste in the previous work, and modify to store
  #all values in an array:
for i from 1 to n do
          x:=xval[i]:  #current x
          y:=yval[i]:  #current y
          k:= f(x,y):  #current slope
          yval[i+1]:= y + h*k:   #new y value via Euler
          xval[i+1]:= x + h:     #updated x-value:
              end do:            #ends a do loop  
approxsol:=pointplot({seq([xval[i],yval[i]], i=1..n+1)}):
exactsol:=plot(exp(t),t=0..1,`color`=`black`):   
     #used t because x was already used above
display({approxsol,exactsol},title=`approximate
and exact solution graphs`);
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   It should be that as your step size h gets smaller, your approximations to the actual solution get better.  
This is true if your computer can do exact math (which it can't), but in practice you don't want to make the 
computer do too many computations because of problems with round-off error and computation time, so 
for example, choosing h = .0000001 would not be practical. But, trying h = 0.01 in our previous initial 
value problem should be instructive.
     If we change the n-value to 100 and keep the other data the same we can rerun our experiment:

x0:=0.0; xn:=1.0; y0:=1.0; n:=100; h:=(xn-x0)/n;
x:=x0; y:=y0;

for i from 1 to n do
          k:= f(x,y):  #current slope
          y:= y + h*k: #new y value via Euler
          x:= x + h:   #updated x-value:
             if i mod 10 =0   # this is asking if "i" is a multiple of 10
                                     # i.e. if h is a multiple of 0.1
               then print(x,y,exp(x));
             end if; #use the ``if'' test to decide when to print;
              
    end do:    #end the do loop          

 So you can see we got closer to the actual value of e, but really, considering how much work Maple did 
this was not a great result.  



Class exercise 3:  For this very special initial value problem which has exp x  as the solution, set up 

Euler on the x-interval 0, 1 , with n subdivisions, and  step size  h =
1
n

.  Write down the resulting Euler 

estimate for exp 1 = e.  What is the limit of this estimate as  n/N?  You learned this special limit in 
Calculus!



> > 
> > 

> > 

> > 

We can make a picture of what we did as follows, using the mouse to cut and paste previous work, and 
then editing it for the new situation:

restart:
Digits:=6:with(plots):with(LinearAlgebra):
f:=(x,y)->y:
n:=100: x0:=0.0: y0:=1.0:
xn:=1.0: h:=(xn-x0)/n:
xval:=Vector(n+1):yval:=Vector(n+1):  
   #to collect all our points. Now n=100
xval[1]:=x0: yval[1]:=y0:      
   #initial values
for i from 1 to n do
          x:=xval[i]:  #current x
          y:=yval[i]:  #current y
          k:= f(x,y):  #current slope
          yval[i+1]:= y + h*k:   #new y value via Euler
          xval[i+1]:= x + h:     #updated x-value:
  end do:                #``end do '' ends a for loop  
approxsol2:=pointplot({seq([xval[i],yval[i]], i=1..n+1)}):
exactsol:=plot(exp(t),t=0..1,`color`=`red`):   
     #used t because x was already used above
display({approxsol2,exactsol});



     In more complicated problems it is a very serious issue to find relatively efficient ways of 
approximating solutions.  An entire field of mathematics, ``numerical analysis'' deals with such issues for a
variety of mathematical problems.   The book talks about some improvements to Euler  in sections 2.5 and 
2.6, in particular it discusses improved Euler, and Runge Kutta.  Runge Kutta-type codes are actually used 
in commerical numerical packages, e.g. in Maple and Matlab.  
     Let's summarize some highlights from 2.5-2.6.
     Suppose we already knew the solution y x  to the initial value problem

dy
dx

= f x, y   

y x0 = y0.  
If we integrate the DE from x to xC h and apply the Fundamental Theorem of Calculus, we get

y xC h Ky x =
x

xCh
f t, y t dt , i.e.

y xC h = y x C
x

xCh
f t, y t dt .  

The problem with Euler is that we always approximate this integral by h$f x, y x , i.e. we use the left-
hand endpoint as our approximation of the ``average height''.  This causes errors, and these accumulate as 
we move from subinterval to subinterval and as our approximate solution diverges from the actualy 
solution. The improvements to Euler depend on better approximations to the integral above  These are 
subtle, because we don't yet have an approximation for y t  when t is greater than x, so also not for the 
integrand.  
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``Improved Euler'' uses an approximation to the Trapezoid Rule to approximate the integral.  Recall, the 
trapezoid rule for this integral approximation would be

 
1
2

h$ f x, y x C f xC h, y xC h .  

Since we don't know y xC h  we approximate it using unimproved Euler, and then feed that into the 
trapezoid rule.  This leads to the improved Euler do loop below, for the same differential equation we just 
studied with the unimproved Euler method. Of course before you use it you must make sure you initialize 
everything correctly.  

restart: Digits:=6: with(plots): with(LinearAlgebra):
f:=(x,y)->y: #dy/dx=f(x,y)
x0:=0.: y0:=1.: #initial point
xn:=1.:  #final x-value
x:=x0; y:=y0; n:=5; h:=(xn-x0)/n;
for i from 1 to n do
    k1:=f(x,y):          #left-hand slope
    k2:=f(x+h,y+h*k1):   #approximation to right-hand slope
    k:= (k1+k2)/2:       #approximation to average slope
    y:= y+h*k:            #improved Euler update
    x:= x+h:             #update x
    print(x,y,exp(x));   #exp(x) is exact solution in this case.
od:  

Notice you almost did as well with n = 5 in improved Euler as you did with n = 100 in unimproved Euler. 
     One can also use Taylor approximation methods to improve upon Euler; by differentiating the equation 
dy
dx

= f x, y  and using the chain rule on the right hand side one can solve for higher order derivatives of 

y in terms of the lower order ones, and then use the Taylor approximation for y xC h  in terms of y x .  
See the book for more details of this method, we won't do it here.
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     In the same vein as ``improved Euler'' we can use the Simpson approximation for the integral instead of
the Trapezoid one, and this leads to the Runge-Kutta method.  You may or may not have talked about 
Simpson's Parabolic Rule for approximating definite integrals in Calculus, it is based on a quadratic 
approximation to the function g, whereas the Trapezoid rule is based on a first order approximation.  In 
fact, if you fit a parabola p x  to the three points

x
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0
,  

x
0
C x

1
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x
0
C x
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2 ,  x
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, g x
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p t dt = 
x
1
K x

0
6 g x

0
C 4$g

x
0
C x

1
2 C g x

1
.

(You will check this fact in your homework this week!) That formula is the basis for Simpson's rule, 
which you can review in your Calculus text or at Wikipedia.  (Wikipedia also has a good entry on Runge-
Kutta.)  Applying the Simpson's rule approximation for our DE we would have

y x C h = y x C
x

xCh

f t, y t dt 

               z y x C
h
6 $ f x, y x C 4 f x C h

2 , y x C h
2 C f x C h, y x C h        

and we'd have the same issue as in Trapezoid - that we've only approximated up to y x  so far.  Here's 
how Runge-Kutta takes care of this.  The text explains it in section 2.6.  

restart: #reinitialize
Digits:=6: with(plots): with(LinearAlgebra):
f:=(x,y)->y: #dy/dx=f(x,y)
x0:=0.: y0:=1.: #initial point
xn:=1.:  #final x-value

We're still using slope function f x, y = y but the code below will work for whatever you define this 

function to be when you do the initialization step.

x d x0 : y d y0 : n d 5 : h d
xnK x0

n
:

for i from 1 to n do
    k1:=f(x,y):              #left-hand slope
    k2:=f(x+h/2,y+h*k1/2):   #1st guess at midpoint slope
    k3:=f(x+h/2,y+h*k2/2):   #second guess at midpoint slope
    k4:=f(x+h,y+h*k3):       #guess at right-hand slope
    k:=(k1+2*k2+2*k3+k4)/6:  #final guess at average slope, related to Simpson's Rule
    x:=x+h:                  #x update
    y:=y+h*k:                #y update
    print(x,y,exp(x));       #display current values
  end do:  

Notice how close Runge-Kutta gets you to the correct value of e, with n = 5!
   As we know, solutions to non-linear DE's can blow up, and there are other interesting pathologies as 
well, so if one is doing numerical solutions there is a real need for care and understanding, see e.g. p. 140
-141.  


