Math 2250-4
Week 4 concepts and homework, due February 3.
Recall that problems which are not underlined are good for seeing if you can work with the underlying concepts; that the underlined problems are to be handed in; and that the Friday quiz will be drawn from all of these concepts and from these or related problems. You will also have a Maple/Matlab project due on Monday February 6.

2.3: improved velocity-acceleration models:

2, 9, 10, 12: constant, or constant plus linear drag forcing
13, 14, 17, 18: quadratic drag
24, 25: escape velocity
2.4-2.6: numerical methods for approximating solutions to first order initial value problems. Your second Maple/Matlab project addresses these sections too.
2.4: 5: Euler's method
2.5: 5: improved Euler
2.6: 5: Runge-Kutta
w4.1) Runge-Kutta is based on Simpson's rule for numerical integration. Simpson's rule is based on the fact that for a subinterval of length $2 \cdot \mathrm{~h}$, which by translation we may assume is the interval $-h \leq x \leq h$, the parabola $y=p(x)$ which passes through the points $\left(-h, y_{-1}\right),\left(0, y_{0}\right),\left(h, y_{1}\right)$ has integral

$$
\begin{equation*}
\int_{-h}^{h} p(x) \mathrm{d} x=\frac{2 h}{6} \cdot\left(y_{-1}+4 y_{0}+y_{1}\right) \tag{1}
\end{equation*}
$$

If we write the quadratic interpolant function $p(x)$ whose graph is this parabola as

$$
p(x)=a+b x+c x^{2}
$$

with unknown parameters a, b, c then since we want $p(0)=y_{0}$ we solve $y_{0}=a+0+0$ to deduce that $a=y_{0}$.
w4.1a) Use the requirement that the graph of $p(x)$ is also to pass through the other two points, $\left(-h, y_{-1}\right),\left(h, y_{1}\right)$ to express b, c in terms of h, y_{-1}, y_{0}, y_{1}.
w4.1b) Compute $\int_{-h}^{h} p(x) \mathrm{d} x$ for these values of a, b, c and verify equation (1) above.

