Math 2250-4
Week 12 concepts and homework, due April 6.
Recall that all problems are good for seeing if you can work with the underlying concepts; that the underlined problems are to be handed in; and that the Friday quiz will be drawn from all of these concepts and from these or related problems.
10.4: using convolution integrals to find inverse Laplace of $F(s) G(s)$; using the differentiation theorem to find the Laplace transform of $t \cdot f(t)$; using these (and other) techniques to solve linear differential equations.
10.4: $2,3,9,15, \underline{\mathbf{2 6}}, 29, \underline{\mathbf{3 0}}, 37, \underline{\mathbf{3 6}}$
w12.1a) Compute the convolution $f * g(t)$ for $f(t)=t$ and $g(t)=t^{2}$ and use the Laplace transform table to show that $\mathcal{L}\{f * g(t)\}(s)=F(s) G(s)$ in this case.
b) Repeat part $\underline{\text { a }}$ for the example $f(t)=t, g(t)=\cos (k t)$.
10.5: using the unit step function to turn forcing on and off; Laplace transform of non-sinusoidal periodic functions
10.5: $3,7,11,13,25,31, \underline{\mathbf{2 6}}, \underline{\mathbf{3 4}}$
w12.2) In the week 11 homework problem you solved the following Laplace transform problem using the definition of Laplace transform. This week, write $f(t)$ as a linear combination of unit step functions in order to find (the same) Laplace transform. Here's the graph of f, which is zero for $t \geq 4$:

EP 7.6 impulse functions as limits of differences of scaled unit step functions.
w12.3) Solve this initial value problem and then sketch the solution. Explain what happens. The forcing term is a sum of instananeous unit impulses, as discussed in EP7.6 and Monday's class notes.

$$
\begin{gathered}
x^{\prime \prime}(t)+4 x(t)=\delta(t-\pi)+\delta(t-2 \pi)-2 \delta(t-4 \pi) . \\
x(0)=0 \\
x^{\prime}(0)=0
\end{gathered}
$$

6.1: finding eigenvalues and eigenvectors (or a basis for the eigenspace if the eigenspace is more than one-dimensional).

6.1: 7, 17, 19, 25

6.2: diagonalizability: recognizing matrices for which there is an eigenbasis, and those for which there is not one. Writing the eigenbasis equation as $A P=P D$ where P is the matrix of eigenvector columns, and D is the diagonal matrix of eigenvalues.
6.2: 3, 9, 21, 23.
w12.4) Find eigenvalues and eigenvectors (or a basis for the eigenspace if the eigenspace is more than one-dimensional), for the following matrices. You can check your work with technology, but you don't have to hand in the technology check.
a) $A:=\left[\begin{array}{rr}-8 & -6 \\ 9 & 7\end{array}\right]$
b) $B:=\left[\begin{array}{rr}3 & 1 \\ -1 & 1\end{array}\right]$
c) $C:=\left[\begin{array}{rrr}2 & 9 & 3 \\ -2 & -5 & 0 \\ 2 & 6 & 1\end{array}\right]$
d) $E:=\left[\begin{array}{rrr}-1 & 6 & 6 \\ 0 & -3 & -2 \\ 0 & 4 & 3\end{array}\right]$
e) $F:=\left[\begin{array}{rrr}7 & 3 & -9 \\ -4 & -3 & 4 \\ 4 & 2 & -5\end{array}\right]$.

12.5)

a) Which of the matrices in 12.4 are diagonalizable and which are not?
b) For the diagonalizable matrices A, C above, verify the diagonalizing identity $P^{-1} A P=\mathrm{D}$ by checking the equivalent equation $A P=P \mathrm{D}$.
c) Explain what happens to the diagonal matrix D of eigenvalues for a diagonalizable matrix, if you change the order of the eigenvector columns in P, in the identity $A P=P \mathrm{D}$.
12.6) Compute A^{10} by hand, for the matrix A in 12.4. Hint: use the identity $A=P \mathrm{D} P^{-1}$. (You can check your answer with technology, but don't have to hand that part in.)

