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Name.........................................................................................

I.D. number................................................................................

Math 2250-4
FINAL EXAM

May 3, 2012

     This exam is closed-book and closed-note.  You may  use a scientific calculator, but not one which is 
capable of graphing or of solving differential or linear algebra equations. Laplace Transform tables are 
included with this exam.  In order to receive full or partial credit on any problem, you must show all 
of your work and justify your conclusions.  This exam counts for 30% of your course grade.  It has 
been written so that there are 150 points possible,  and the point values for each problem are indicated in 
the right-hand margin.  Good Luck!

problem        score       possible

1           _______        20

2           _______        20

3           _______        15

4           _______        15

5           _______        10

6           _______        10

7           _______        15

8           _______        15

9           _______        30

total        _______       150
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1)  Suppose that an object moves vertically, subject only to the acceleration of gravity g = 32 
ft
s2

 and a 

drag force proportional to the object's velocity.  Choose the positive y direction to be up and write 
y# t = v t  for the velocity.  For particular values of the object's mass and the drag coefficient, the 
differential equation

dv
dt

=K32K .5 v 

governs the object's velocity v t . 

1a) Construct a phase diagram and determine lim
t/N

v t  for all solutions to this differential equation.  What 
is the term for this limiting velocity?

(5 points)

1b)  Suppose an object is thrown vertically upwards so that its velocity satisfies 
dv
dt

=K32K .5 v 

v 0 = 20 . 
Find a formula for v t . 

(10 points)

1c)  Assume the height y t  of this thrown object satisfies y 0 = 0. Find its the maximum height.
(5 points)
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2)  Consider the following initial value problem, which could arise from an unforced mass-spring 
oscillation problem:

x## t C 2 x# t C 10 x t = 0
x 0 = 2
x# 0 = 4 .

2a)  What sort of damping is exhibited in this problem?
(2 points)

2b)  Solve this initial problem using the methods of Chapter 5, i.e. by using the characteristic polynomial 
method.

(13 points)

2c)  Explain what your solution to 2b) has to do with the phase portrait and curve shown below.  Your 
explanation should include an explanation of what the system of first order differential equations shown in 
the pplane output has to do with the second order differential equation in this problem.

(5 points)
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3a)  Find the general solution to the forced mass-spring problem
x## t C 2 x# t C 10 x t = 5C 10 t .

Notice that you already found the homogeneous solution in problem 2).
(10 points)

3b)  Use Laplace transform to solve a different forcing problem for this configuration.  In this problem the 
mass is at equilibrium until time t = 2.  At this time it is forced with an impulsive force such that x t  
satisfies

x## t C 2 x# t C 10 x t = 3 d tK 2  .
x 0 = 0
x# 0 = 0 .

(5 points)
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4)  Consider the forced oscillator initial value problem
x## t Cw0

2
 x t = F0 cos w t  .

x 0 = x0 
x# 0 = v0 

Assume ws w0, i.e. the non-resonance case.  Use Laplace transforms to solve the initial value problem.  
(15 points)
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5)  Find a basis for =2 consisting of eigenvectors for the matrix

A =
K4 2

3 K3
 .

Make sure to check your answers, because you'll be using them in following problems.  Hint: the 
eigenvalues are integers.

(10 points)
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6a)  Use your work from problem 5) to find the general solution to this first order system of differential 
equations:

u# t

v# t
=

K4 2

3 K3

u t

v t
 .

(5 points)

6b)  Using your general solution above and the eigendata of the matrix, sketch a qualitatively accurate 
picture of the phase diagram for this system of differential equations

(5 points)

u
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7)  Consider the following undamped mass-spring configuration, where as usual x1 t , x2 t  measure the 
displacement of the two masses from equilibrium.

7a)  In case m1 = 3, m2 = 2, k1 = k2 = 6, k3 = 0 (in other words, the third spring isn't really there), show 
that the resulting system of differential equations reduces to

x1 ## t =K4 x1 C 2 x2
x2 ## t = 3 x1 K 3 x2 .

(4 points)

7b)  What is the dimension of the solution space to this system of DEs?  Explain.
(4 points)

7c)  Find the general solution to this system of differential equations.  Hint:  Use the results of problem 5).
(4 points)

7d)  Describe the two fundamental modes of this system.
(3 points)
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8)  Although we usually use a mass-spring configuration to give context for studying second order 
differential equations, we’ve also used the rigid-rod pendulum to effectively exhibit several key ideas from 
this course. Recall that in the undamped version of this configuration, we let the pendulum rod length be L,
assume the rod is massless, and that there is a mass m attached at the end of the pendulum, on which the 
vertical gravitational force acts with force magnitude mg. This mass will swing along circular arcs of 
signed arclength s = L q  from the vertical reference point where q is the angle in radians from vertical. The
configuration is indicated below. Note that we are considering a pendulum for which the mass (and rod) 
are able to rotate freely about the fixed end of the rod.

8a)  The undamped pendulum system satisfies conservation of energy, i.e. the sum of the kinetic energy 
from the mass motion plus the potential energy from its change in height must be constant once the system 
is put into motion.  Use this fact to derive the differential equation for q t  that we've studied in this 
course, namely

q## t C
g
L

sin q t = 0 .

Hints:  Express the sum of the kinetic energy and potential energy in terms of m, L, g, q t , q# t .  Then 
use the fact that the total energy is constant in time (conservation of energy) if and only if the time 
derivative of the total energy is identically zero.

(8 points)

8b)  How did we justify replacing this non-linear differential equation with a linear one when q t  was 
near the equilibrium solution qh 0, and what is the linear differential equation we came up with?

(4 points)

8c)  Use the linear differential equation in part 8b) to find the expected period for an oscillating pendulum 
in the case of small oscillations, in terms of g, L.

(3 points)
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9)  Consider this autonomous system of differential equations for two interacting populations x t , y t :
x# t = xK 2 x2 C x y 
y# t = yK y2 C x y   

9a)  Explain why someone would be justified in calling this a "symbiotic logistic populations" model.  
Your explanation should consider the various terms in these two differential equations, and what they 
represent. (The word "symbiotic" means that the presence of each species is beneficial to the other species.
)

(4 points)

9b)  Find the four equilibrium solutions algebraically.  Plot the equilibrium points onto the phase portrait 
below.

(6 points)
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System of DEs repeated for convenience:
x# t = xK 2 x2 C x y 
y# t = yK y2 C x y   

9c)  Use the Jacobian matrix to classify each of the equilbrium points.  Recall that your choices are:  spiral 
source, spiral sink, stable center, nodal source, nodal sink, saddle point.  Your description should include 
whether or not the equilibrium point is stable.  Hints: If you do the algebra correctly and you have the 
correct equilibrium points none of the eigenvalues are messy.  Also, your answers should be consistent 
with the phase portrait on the previous page.

(16 points)

u

9d)  If your equilibrium point and Jacobian computations above are correct, then you will see that the 
linearized system of differential equations at one of the equilibrium points is the same system you studied 
in problem 6).  Explain how its solution and the phase portrait you drew in 6) are related to the solutions of
the non-linear system, and to the phase portrait in the non-linear system.

(4 points)
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