Math 2250

Earthquake project

April 2001
Enter your name here: ?????????????????????????????
Project 3. Please fill in all areas below marked ????? and solve problems 3.1 to 3.6. The problem headers:
\qquad PROBLEM 3.1. BUILDING MODEL FOR AN EARTHQUAKE. PROBLEM 3.2. TABLE OF NATURAL FREQUENCIES AND PERIODS. PROBLEM 3.3. UNDETERMINED COEFFICIENTS STEADY-STATE PERIODIC SOLUTION.
_ PROBLEM 3.4. PRACTICAL RESONANCE. PROBLEM 3.5. EARTHQUAKE DAMAGE.
PROBLEM 3.6. THREE FLOORS.
[> with(DEtools) :with(plots) :with(linalg):

3.1. BUILDING MODEL FOR AN EARTHQUAKE.

Refer to the textbook of Edwards-Penney, section 7.4, page 437. Consider a building with 7 floors.
Let the mass in slugs of each story be $\mathrm{m}=1000.0$ and let the spring constant be $\mathrm{k}=10000.0$ (lbs/foot). Define the 7 by 7 mass matrix M and Hooke's matrix K for this system and convert Mx '" $=\mathrm{Kx}$ into the system x' $=A x$ where A is defined by textbook equation (1), page 437.

PROBLEM 3.1

Find the eigenvalues of the matrix A to six digits, using the Maple command "eigenvals(A)." Justify in particular that all seven eigenvalues are negative by direct computation.
\# Sample Maple code for a model with 4 floors.
\# Use maple help to learn about augment, stackmatrix, diag, transpose, evalm.
A1:=diag(-20,-20,-20,-10):
A2: $=\operatorname{augment}(\operatorname{vector}([0,0,0,0])$,stackmatrix $(\operatorname{diag}(1,1,1)$,matrix $([[0,0,0]])))$:
A3:=transpose(A2):
A:=evalm(A1+10*A2+10*A3);
evalf(eigenvals(A));
[> \# Problem 3.1

3.2. TABLE OF NATURAL FREQUENCIES AND PERIODS.

Refer to figure 7.4.17, page 437.

PROBLEM 3.2.

Find the natural angular frequencies omega=sqrt(-lambda) for the seven story building and also the corresponding periods
2PI/omega, accurate to six digits. Display the answers in a table .
\# Sample code for a 4×3 table.
\# Use maple help to learn about printf.
ev:=[-38.3,-33.4,-26.2,-17.9]: n:=4:
Omega:=lambda -> sqrt(-lambda):
format:="\%10.6f \%10.6f \%10.6fln":
seq(printf(format,ev[i],Omega(ev[i]),2*evalf(Pi)/Omega(ev[i])),i=1..n);
[> \# Problem 3.2

3.3. UNDETERMINED COEFFICIENTS STEADY-STATE PERIODIC SOLUTION.

Consider the forced equation $x^{\prime}=A x+\cos (w t) b$ where b is a constant vector. The earthquake's ground vibration is accounted for by the extra term $\cos (w t) b$, which has period $T=2 \mathrm{Pi} / \mathrm{w}$.
The solution $\mathrm{x}(\mathrm{t})$ is the 7 -vector of excursions from equilibrium of the corresponding 7 floors. Sought here is not the general solution, which certainly contains transient terms, but rather the steady-state periodic solution, which is known from the theory to have the form $x(t)=\cos (w t) c$ for some vector c that depends only on A and b.

PROBLEM 3.3.

Define $\mathrm{b}:=(1 / 4)^{*} \mathrm{w}^{*} \mathrm{w}^{*}$ vector $([1,1,1,1,1,1,1])$: in Maple and find the vector c in the undetermined coefficients solution $\mathrm{x}(\mathrm{t})=\cos (\mathrm{wt}) \mathrm{c}$. Vector c depends on w . As outlined in the textbook, vector c can be found by solving the linear algebra problem $-w^{\wedge} 2 c=A c+b$; see page 433. Don't print c, as it is too complex; instead, print $\mathrm{c}[1]$ as an illustration.
\# Sample code for defining b and A , then solving for c in the 4-floor case.
w:='w':
$\mathrm{b}:=0.25^{*} \mathrm{w}^{*} \mathrm{w}^{*}$ vector($\left.[1,1,1,1]\right)$:
A1:=diag(-20,-20,-20,-10):
A2:=augment(vector([0,0,0,0]),stackmatrix(diag(1,1,1),matrix([[0,0,0]]))):
$\mathrm{A}:=\operatorname{evalm}\left(\mathrm{A} 1+10^{*} \mathrm{~A} 2+10 * \operatorname{transpose}(\mathrm{~A} 2)\right)$;
c:=linsolve(evalm(A+w***diag(1,1,1,1)),-b):
evalf(c[1]);
[> \# PROBLEM 3.3

3.4 PRACTICAL RESONANCE.

Consider the forced equation $\mathrm{x}^{\prime}=\mathrm{Ax}+\cos (\mathrm{wt}) \mathrm{b}$ of 3.3 above with $\mathrm{b}:=0.25^{*} \mathrm{w}^{*} \mathrm{w}^{*}$ vector $([1,1,1,1,1,1,1])$.
Practical resonance can occur if a component of $x(t)$ has large amplitude compared to the vector norm of b. For example, an earthquake might cause a small 3-inch excursion on level ground, but the building's floors might have 50 -inch excursions, enough to destroy the building.

PROBLEM 3.4.
Let $\operatorname{Max}(\mathrm{c})$ denote the maximum modulus of the components of vector c . Plot $\mathrm{g}(\mathrm{T})=\operatorname{Max}(\mathrm{c}(\mathrm{w}))$ with $\mathrm{w}=\mathrm{T} /(2 * \mathrm{Pi})$
for periods $\mathrm{T}=0$ to $\mathrm{T}=6$, ordinates $\mathrm{Max}=0$ to $\mathrm{Max}=10$, the vector $\mathrm{c}(\mathrm{w})$ being the answer produced in 3.3 above.
Compare your figure to the textbook Figure 7.4.18, page 438.
\# Sample maple code to define the function Max(c), 4-floor building.
\# Use maple help to learn about "norm."
with(linalg):

```
Max:= c -> norm(c,infinity);
B:=w*w*}\operatorname{diag}(1,1,1,1): b:=0.25*\mp@subsup{w}{}{*}\mp@subsup{w}{}{*}\mathrm{ vector([1,1,1,1]):
C:=ww -> subs(w=ww,linsolve(evalm(A+B),-b)):
plot(Max(C(2*Pi/r)),r=0..6,0..10);
[ > # PROBLEM 3.4
```


3.5. EARTHQUAKE DAMAGE.

The maximum amplitude plot of 3.4 can be used to detect the likelihood of earthquake damage for a given
ground vibration of period T. A ground vibration (1/4) $\cos (\mathrm{wt}), \mathrm{T}=2 * \mathrm{Pi} / \mathrm{w}$, will be assumed, as in 3.4.
PROBLEM 3.5.
Replot the amplitudes in 3.4 for periods 0 to 6 and amplitudes 5 to 10 . Determine approximate ranges for the period T such that some floor in the building will undergo excursions from equilibrium in excess of 5 feet.

```
[ > # PROBLEM 3.5
> # Plot it.
[ > # Print period ranges ???.
```


3.6. THREE FLOORS.

Consider a building with only three floors each weighing 20 tons. Assume each floor corresponds to a restoring
Hooke's force with constant $\mathrm{k}=4$ tons/foot. Assume that ground vibrations from the earthquake are modeled by
(1/4) $\cos (\mathrm{wt})$ with period $\mathrm{T}=2 * \mathrm{Pi} / \mathrm{w}$ (same as the 7 -floor model above).

PROBLEM 3.6.

Model the 3-floor problem in Maple. Plot the maximum amplitudes against the period 0 to 6 and amplitude
4 to 10 . Determine from the graphic the period ranges which cause the amplitude plot to spike above 4 feet.

```
[ > # PROBLEM 3.6
[> # Define k=??? and m=???, then matrix A=???.
[ > # Amplitude plot for T=0..6,C=4..10
> # From the graphics, T-ranges are ????
    # which give amplitude spikes above 4 feet. These are
    # determined by mouse-clicks on the graph, so they
    # are approximate values only.
>
```

