$\qquad$ Section (circle one):

## Math 2250-4

## Super Quiz 2

## November 1, 2013

la) What is the span of a collection of vectors $\underline{v}_{1}, \underline{v}_{2}, \ldots \underline{v}_{n}$ ?

$$
\text { all } \vec{w} \text { st. } \vec{w}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\ldots+c_{n} \vec{v}_{n}^{n} \quad, c_{1}, c_{2} \ldots c_{n} \in \mathbb{R}
$$

ie. the collection of all line a combinations
lb) What does it mean for vectors $\underline{v}_{1}, \underline{v}_{2}, \ldots, v_{n}$ to be linearly independent?

$$
\begin{equation*}
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{v}_{n}=\overrightarrow{0} \Rightarrow c_{1}=c_{2}=\cdots=c_{n}=0 \tag{1point}
\end{equation*}
$$

1c) What is a basis for a vector space/subspace $W$ ?

$$
\begin{gathered}
\text { a collection of vectors } \vec{v}_{1}, \vec{v}_{2}, \ldots \vec{v}_{n} \text { that spans } W \text {, and that } \\
\text { is ane linearly indepandart }
\end{gathered}
$$

2a) Find a basis for the solution space to homogeneous matrix equation $A \underline{\boldsymbol{x}}=\underline{\mathbf{0}}$, where $A$ is the matrix on the left below, and its reduced row echelon form is on the right.
\(\left[\begin{array}{ccccc}x_{1} \& x_{2} \& x_{3} \& x_{4} \& x_{5} <br>
2 \& 6 \& 0 \& -6 \& 1 <br>
0 \& 0 \& 3 \& 6 \& 7 <br>
3 \& 9 \& -8 \& -25 \& 5 <br>

-1 \& -3 \& 4 \& 11 \& 6\end{array}\right] 0\)| 0 |
| :--- |
| 0 |\(\rightarrow\left[\begin{array}{rrrrr|l}1 \& 3 \& 0 \& -3 \& 0 <br>

0 \& 0 \& 1 \& 2 \& 0 <br>
0 \& 0 \& 0 \& 0 \& 1 <br>

0 \& 0 \& 0 \& 0 \& 0\end{array}\right]\)| 0 |
| :--- |
| 0 |
| 0 |

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{s}
\end{array}\right]=\left[\begin{array}{c}
-3 s+3 t \\
s \\
-2 t \\
t \\
0
\end{array}\right]=s\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+t\left[\begin{array}{c}
3 \\
0 \\
-2 \\
1 \\
0
\end{array}\right]
$$

backsolve $x_{5}=0$

$$
\begin{aligned}
& x_{4}=t \\
& x_{3}=-2 t \\
& x_{2}=s \\
& x_{1}=-3 s+3 t
\end{aligned}
$$

$$
\text { basis: }\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
3 \\
0 \\
-2 \\
1 \\
0
\end{array}\right] \text {. }
$$

ab) What is the dimension of the solution space in part 2a?


$$
\begin{aligned}
& \begin{array}{lllll}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5}
\end{array} \\
& {\left[\begin{array}{rrrrr}
2 & 6 & 0 & -6 & 1 \\
0 & 0 & 3 & 6 & 7 \\
3 & 9 & -8 & -25 & 5 \\
-1 & -3 & 4 & 11 & 6
\end{array}\right] \underset{O}{\mathcal{O}} \underset{O}{O}\left[\begin{array}{rrrrr}
1 & 3 & 0 & -3 & 0 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] 0}
\end{aligned}
$$

3) Consider the differential equation below for a function $x(t)$, which could arise from an unforced massspring configuration:

$$
x^{\prime \prime}(t)+2 x^{\prime}(t)+10 x(t)=0
$$

3a) Find the general solution to this homogeneous linear differential equation. Hint: use the characteristic polynomial method to first find a basis.

$$
\begin{gathered}
p(r)=r^{2}+2 r+10=0 \\
(r+1)^{2}+9=0 \\
(r+1)^{2}=-9 \\
r+1= \pm 3 i \\
r=-1 \pm 3 i
\end{gathered}
$$

$$
\begin{aligned}
& \text { Complex solths }(-1+3 i) t, e^{(-1-3 i) t} \\
& \text { real basis } e^{-t} \cos 3 t, e^{-t} \sin 3 t \\
& x(t)=c_{1} e^{-t} \cos 3 t+c_{2} e^{-t} \sin 3 t
\end{aligned}
$$

Sb) Which of the three damping phenomena is exhibited by solutions to this differential equation?

$$
\text { undendamped (complex toots to } p(r) \text { ). }
$$

3c) Now consider the inhomogeneous DE

$$
x^{\prime \prime}(t)+2 x^{\prime}(t)+10 x(t)=-20
$$

Notice that $x_{P}(t)=-2$ is a particular solution. Use this fact and your previous work to write down the general solution to the inhomogeneous DE .

$$
\begin{align*}
x & =x_{p}+x_{1}+  \tag{2points}\\
& =-2+c_{1} e^{-t} \cos 3 t+c_{2} e^{-t} \sin 3 t
\end{align*}
$$

3d) Solve the initial value problem

$$
\begin{aligned}
x^{\prime \prime}(t)+2 x^{\prime}(t) & +10 x(t)=-20 \\
x(0) & =1 \\
x^{\prime}(0) & =3
\end{aligned}
$$

$$
\begin{align*}
& x(t)=-2+c_{1} e^{-t} \cos 3 t+c_{2} e^{-t} \sin 3 t  \tag{6points}\\
& x^{\prime}(t)=c_{1}\left(-e^{-t} \cos 3 t-3 e^{-t} \sin 3 t\right)+c_{2}\left(-e^{-t} \sin 3 t+3 e^{-t} \cos 3 t\right) \\
& x(0)=1=-2+c_{1} \Rightarrow c_{1}=3 \\
& x^{\prime}(0)=3=-c_{1}+3 c_{2} \quad \begin{array}{l}
3=-3+3 c_{2} \\
6=3 c_{2} \Rightarrow c_{2}=2
\end{array} \\
& x(t)=-2+3 e^{-t} \cos 3 t+2 e^{-t} \sin 3 t
\end{align*}
$$

