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1 a) What is the of a collection of vectors v1,
2’

v?

.L ,

lb) What does it mean for vectors v1,
2’

... v to be linearly independent?
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1 c) What is a basis for a vector space/subspace W?
(1 pornt)

2a) Find a basis for the solution space to homogeneous matrix equation A = , where A is the matrix on
the left below, and its reduced row echelon form is on the right.
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2b) What is the dimension of the solution space in part 2a?



3) Consider the differential equation below for a function x(t), which could arise from an unforced mass-
spring configuration:

x’’(t) +2x’(t) + lOx(t)=0.

3a) Find tlgieral solutiontd this homogeneous linear differential equation. Hint: use the characteristic
polynomial method to ffit fmd a basis.
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3b) ‘Which of the three damping phenomena is exhibited by solutions to this differential equation?
I’— (1 point)
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3c) Now consider the inhomogeneous DE
x’ (1) + 2 x’ (1) + 10 x(t) -20.

Notice that =—2 is a particular solution. Use this fact and your previous work to write down the

general solution to the inhornogeneous DE.
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3d) Solve the initial value problem
x’’(t) +2x’(t) + lOx(1)-20

x(0) = 1
x’ (0) = 3.

(6 points)
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