\qquad

Math 2250-4
 Super Quiz 2
 November 1, 2013

1a) What is the span of a collection of vectors $\underline{\boldsymbol{v}}_{1}, \underline{\boldsymbol{v}}_{2}, \ldots \underline{\boldsymbol{v}}_{n}$?

1b) What does it mean for vectors $\underline{v}_{1}, \underline{\boldsymbol{v}}_{2}, \ldots \underline{\boldsymbol{v}}_{n}$ to be linearly independent?

1c) What is a basis for a vector space/subspace W ?
(1 point)

2a) Find a basis for the solution space to homogeneous matrix equation $A \underline{\boldsymbol{x}}=\underline{\mathbf{0}}$, where A is the matrix on the left below, and its reduced row echelon form is on the right.

$$
\left[\begin{array}{rrrrr}
2 & 6 & 0 & -6 & 1 \\
0 & 0 & 3 & 6 & 7 \\
3 & 9 & -8 & -25 & 5 \\
-1 & -3 & 4 & 11 & 6
\end{array}\right] \rightarrow\left[\begin{array}{rrrrr}
1 & 3 & 0 & -3 & 0 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

2b) What is the dimension of the solution space in part 2 a ?
3) Consider the differential equation below for a function $x(t)$, which could arise from an unforced massspring configuration:

$$
x^{\prime \prime}(t)+2 x^{\prime}(t)+10 x(t)=0 .
$$

3a) Find the general solution to this homogeneous linear differential equation. Hint: use the characteristic polynomial method to first find a basis.

3b) Which of the three damping phenomena is exhibited by solutions to this differential equation?

3c) Now consider the inhomogeneous DE

$$
x^{\prime \prime}(t)+2 x^{\prime}(t)+10 x(t)=-20 .
$$

Notice that $x_{P}(t)=-2$ is a particular solution. Use this fact and your previous work to write down the general solution to the inhomogeneous DE.

3d) Solve the initial value problem

$$
\begin{aligned}
x^{\prime \prime}(t)+2 x^{\prime}(t) & +10 x(t)=-20 \\
x(0) & =1 \\
x^{\prime}(0) & =3 .
\end{aligned}
$$

