Math 2250-4 Super Quiz 2 November 1, 2013

1a) What is the <u>span</u> of a collection of vectors $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_n$?

1b) What does it mean for vectors $\underline{v}_1, \underline{v}_2, \dots \underline{v}_n$ to be <u>linearly independent</u>?

(1 point)

(1 point)

1c) What is a <u>basis</u> for a vector space/subspace W?

(1 point)

2a) Find a basis for the solution space to homogeneous matrix equation $A \underline{x} = \underline{0}$, where A is the matrix on the left below, and its reduced row echelon form is on the right.

2	6	0	-6	1		1	3	0	-3	0	
0	0	3	6	7	\rightarrow	0	0	1	2	0	
3	9	-8	-25	5		0	0	0	0	1	
-1	-3	4	11	6		0	0	0	0	0	

(6 points)

2b) What is the dimension of the solution space in part 2a?

(1 point)

3) Consider the differential equation below for a function x(t), which could arise from an unforced massspring configuration:

$$x''(t) + 2x'(t) + 10x(t) = 0.$$

3a) Find the general solution to this homogeneous linear differential equation. Hint: use the characteristic polynomial method to first find a basis.

(6 points)

3b) Which of the three damping phenomena is exhibited by solutions to this differential equation? (1 point)

3c) Now consider the inhomogeneous DE x''(t) + 2x'(t) + 10x(t) = -20.

Notice that
$$x_p(t) = -2$$
 is a particular solution. Use this fact and your previous work to write down the general solution to the inhomogeneous DE.

(2 points)

3d) Solve the initial value problem

$$x''(t) + 2x'(t) + 10x(t) = -20$$

x(0) = 1
x'(0) = 3.

(6 points)