\qquad

Math 2250-4

Quiz 6

October 25, 2013
1a) Consider the differential equation for $y(x)$

$$
y^{\prime \prime}(x)+3 y^{\prime}(x)-4 y(x)=0
$$

Find the general solution to this homogeneous differential equation. Hint: the solution space has a basis consisting of exponential functions.
(5 points)
If we try $y(x)=e^{r x}$ we compute

$$
L\left(e^{r x}\right)=r^{2} e^{r x}+3 r e^{r x}-4 e^{r x}=e^{r x}\left(r^{2}+3 r-4\right)
$$

Since we want $L\left(e^{r x}\right)=0$ the exponential growth rates r must be roots of the characteristic polynomial, i. e they must solve

$$
0=r^{2}+3 r-4=(r+4)(r-1)
$$

Since the roots are $=-4,1, y_{1}(x)=e^{-4 x}, y_{2}(x)=e^{x}$ solve the $D E$, and the general homogeneous solution is

$$
y_{H}(x)=c_{1} e^{-4 x}+c_{2} e^{x}
$$

1b) Verify that $y(x)=-2$ is a solution to the inhomogeneous differential equation

$$
\begin{equation*}
y^{\prime \prime}(x)+3 y^{\prime}(x)-4 y(x)=8 \tag{1points}
\end{equation*}
$$

for $y(x)=-2, y^{\prime \prime}(x)+3 y^{\prime}(x)-4 y(x)=0+0-4(-2)=8$, so the $D E$ is true for this constant function and it is a (particular) solution.

1c) Combine your work from $\underline{a}, \underline{b}$ to deduce the general solution to the inhomogeneous DE in $\underline{\mathrm{b}}$. Then use this general solution to solve the initial value problem

$$
\begin{gather*}
y^{\prime \prime}(x)+3 y^{\prime}(x)-4 y(x)=8 \\
y(0)=0 \\
y^{\prime}(0)=2 . \tag{4points}
\end{gather*}
$$

The general solution is

$$
y(x)=y_{P}(x)+y_{H}(x)=-2+c_{1} e^{-4 x}+c_{2} e^{x}
$$

So

$$
y^{\prime}(x)=y_{P}^{\prime}(x)+y_{H}^{\prime}(x)=0-4 c_{1} e^{-4 x}+c_{2} e^{x}
$$

To solve the IVP we set $x=0$ and solve for the free parameters:

$$
\begin{gathered}
y(0)=0=-2+c_{1}+c_{2} \\
y^{\prime}(0)=2=-4 c_{1}+c_{2} . \\
c_{1}+c_{2}=2 \\
-4 c_{1}+c_{2}=2
\end{gathered}
$$

Subtracting equations implies

$$
\begin{gathered}
c_{1}=0 \text {, so also } c_{2}=2 \text {, and the solution is } \\
y(x)=-2+2 e^{x} .
\end{gathered}
$$

$\lceil>$ with (DEtools) :

$$
\begin{gather*}
\text { dsolve }\left(\left\{y^{\prime \prime}(x)+3 \cdot y^{\prime}(x)-4 \cdot y(x)=8, y(0)=0, y^{\prime}(0)=2\right\}\right) ; \text { \#Maple check } \\
y(x)=-2+2 \mathrm{e}^{x} \tag{1}
\end{gather*}
$$

