Name + UID: \qquad Section (circle one): C.Wei
S.Bagley

Math 2250-4

 Quiz 5
October 11, 2013

1a) Define what a linear combination of vectors $\underline{v}_{1}, \underline{v}_{2}, \ldots \underline{v}_{n}$ is.
(2 points)
any vector that is a sum of multiples of those vectors, i.e. any $\underline{\boldsymbol{v}}$ that can be expressed as

$$
\underline{\boldsymbol{v}}=c_{1} \underline{\boldsymbol{v}}_{1}+c_{2} \underline{\boldsymbol{v}}_{2}+\ldots+c_{n} \underline{\boldsymbol{v}}_{n} .
$$

1b) Define what it means for vectors $\underline{\boldsymbol{v}}_{1}, \underline{\boldsymbol{v}}_{2}, \ldots \boldsymbol{v}_{n}$ to be linearly independent.
(2 points)
The only linear combination of $\underline{v}_{1}, \underline{v}_{2}, \ldots \boldsymbol{v}_{n}$ that sums to zero is the "trivial" one with all $c_{i}=0$, i.e.

$$
c_{1} \underline{\underline{v}}_{1}+c_{2} \underline{\underline{v}}_{2}+\ldots+c_{n} \underline{\underline{v}}_{n}=0 \Rightarrow \boldsymbol{c}_{1}=c_{2}=\ldots=c_{n}=0 .
$$

2) The span of the vectors

$$
\underline{\boldsymbol{u}}=\left[\begin{array}{c}
1 \\
-2 \\
0
\end{array}\right], \underline{\boldsymbol{v}}=\left[\begin{array}{c}
2 \\
-3 \\
4
\end{array}\right]
$$

is a plane in \mathbb{R}^{3}. Find for which $[x, y, z]^{T}$ the system

$$
c_{1} \underline{\boldsymbol{u}}+c_{2} \underline{\boldsymbol{v}}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

can be solved for c_{1}, c_{2}, in order to find the implicit equation $a x+b y+c z=d$ of this plane.
The augmented matrix for the linear combination equation

$$
c_{1} \underline{\boldsymbol{u}}+c_{2} \underline{\boldsymbol{v}}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

is

$$
\left[\begin{array}{cc|c}
1 & 2 & x \\
-2 & -3 & y \\
0 & 4 & z
\end{array}\right]
$$

Reduce it:
$2 R_{1}+R_{2} \rightarrow R_{2}$:

$$
\left[\begin{array}{ll|c}
1 & 2 & x \\
0 & 1 & 2 x+y \\
0 & 4 & z
\end{array}\right]
$$

$$
-4 R_{1}+R_{3} \rightarrow R_{3}:
$$

$$
\left[\begin{array}{cc|c}
1 & 2 & x \\
0 & 1 & 2 x+y \\
0 & 0 & -8 x-4 y+z
\end{array}\right]
$$

So the system for c_{1}, c_{2} is consistent if and only if $[x, y, z]^{T}$ lies on the plane with implicit equation $-8 x-4 y+z=0$.
(6 points)

