Math 2250 Week 3 Quiz

Name, UID, and section TA: \qquad
Write your answer in the space provided. Show work for full credit.

1. (3 points) Consider the following differential equation for $x(t)$, which could be modeling a logistic differential equation with harvesting

$$
x^{\prime}(t)=-x^{2}+3 x-2 .
$$

Find the equilibrium solutions. Then draw the phase diagram and indicate the stability for each equilibrium solution.

Solution: Since $-x^{2}+3 x-2=-\left(x^{2}-3 x+2\right)=-(x-1)(x-2)$, the equilibrium (i.e. constant) solutions are $x \equiv 1, x \equiv 2$. Using the factored form of the DE right side, we see that $x^{\prime}(t)<0$ for $x>2, x^{\prime}(t)>0$ for $1<x<2, x^{\prime}(t)<0$ for $x<1$. Therefore the phase diagram is

$$
\leftarrow \leftarrow 1 \rightarrow \rightarrow 2 \leftarrow \leftarrow .
$$

Thus the solution $x \equiv 1$ is unstable and the solution $x \equiv 2$ is asymptotically stable.
2. (3 points) Compute the partial fractions decomposition for

$$
\frac{1}{(x-1)(x-2)} .
$$

Solution: We write

$$
\frac{1}{(x-1)(x-2)}=\frac{A}{x-1}+\frac{B}{x-2}=\frac{A(x-2)+B(x-1)}{(x-1)(x-2)}
$$

Equating the numerator on the left with the one on the right yields

$$
1=A(x-2)+B(x-1) .
$$

For $x=2$ we must have $1=B \Rightarrow B=1$. For $x=1$ we must have $1=-A \Rightarrow A=$ -1 . Thus

$$
\frac{1}{(x-1)(x-2)}=\frac{-1}{x-1}+\frac{1}{x-2} .
$$

"Shortcut:" If we subtract

$$
\frac{1}{x-1}-\frac{1}{x-2}
$$

and recombine over their common denominator, we can see that the x terms in the numerator will cancel, leaving a constant. If we divide both sides by that constant we will get the partical fractions decomposition:

$$
\frac{1}{x-1}-\frac{1}{x-2}=\frac{(x-2)-(x-1)}{(x-1)(x-2)}=\frac{-1}{(x-1)(x-2)}
$$

Dividing both sides by -1 yields the same partial fractions decomposition as above.
3. (4 points) Use your work from (2) to solve the initial value problem

$$
\begin{gathered}
x^{\prime}(t)=-x^{2}+3 x-2 \\
x(0)=3
\end{gathered}
$$

Solution: Separate variables:

$$
\begin{gathered}
x^{\prime}(t)=-(x-1)(x-2) \\
\frac{d x}{(x-1)(x-2)}=-d t
\end{gathered}
$$

Use the partial fractions decomposition and integrate:

$$
\begin{gathered}
\int\left(\frac{-1}{x-1}+\frac{1}{x-2}\right) d x=\int-d t \\
\ln \left|\frac{x-2}{x-1}\right|=-t+C
\end{gathered}
$$

Exponentiate:

$$
\left|\frac{x-2}{x-1}\right|=e^{-t+C}=C e^{-t}
$$

So

$$
\frac{x-2}{x-1}=C e^{-t}
$$

Substituting $x(0)=3$ yields $\frac{1}{2}=C$, so

$$
\frac{x-2}{x-1}=\frac{1}{2} e^{-t}
$$

Multiply through by $x-1$ and collect terms to solve for $x(t)$:

$$
\begin{aligned}
x-2=\frac{1}{2}(x-1) e^{-t}= & \frac{1}{2} x e^{-t}-\frac{1}{2} e^{-t} \Rightarrow x\left(1-\frac{1}{2} e^{-t}\right)=2-\frac{1}{2} e^{-t} \\
& \Rightarrow x(t)=\frac{2-\frac{1}{2} e^{-t}}{1-\frac{1}{2} e^{-t}}
\end{aligned}
$$

Page 3

