Math 2250 Week 2 Quiz

Name, UID, and section number: \qquad
Write your answer in the space provided. Show work for full credit.

1. (3 points) Consider the differential equation for $y(x)$:

$$
y^{\prime}=-3 y+9
$$

Is this differential equation separable, linear, both separable and linear, or neither separable nor linear? Explain.

Solution: Both: The equation is separable, because $d y / d x$ is a product of a function of x times a function of y, for example (taking the function of x to be the constant -3):

$$
\frac{d y}{d x}=-3(y-3)
$$

The differential equation is linear because we can rewrite it in the form

$$
y^{\prime}+P(x) y=Q(x)
$$

namely

$$
y^{\prime}+3 y=9
$$

2. (7 points) Solve the initial value problem

$$
\begin{gathered}
y^{\prime}=-3 y+9 \\
y(0)=5
\end{gathered}
$$

Solution: Using the separable DE algorithm:

$$
\frac{d y}{d x}=-3(y-3) \Rightarrow \frac{d y}{y-3}=-3 d x \Rightarrow \int \frac{d y}{y-3}=\int-3 d x
$$

$$
\begin{gathered}
\Rightarrow \ln (|y-3|)=-3 x+C \Rightarrow|y-3|=e^{-3 x+C}=e^{-3 x} e^{C} \\
\Rightarrow y-3=C_{1} e^{-3 x},
\end{gathered}
$$

where C_{1} is either $+e^{C}$ or $-e^{C}$. Thus $y(x)=3+C e^{-3 x} . y(0)=5 \Rightarrow C=2$, and

$$
y(x)=3+2 e^{-3 x} .
$$

Alternately, using the linear DE algorithm,

$$
y^{\prime}+3 y=9 .
$$

Since $P(x)=3$, we choose integrating factor $e^{\int 3 d x}=e^{3 x}$:

$$
\begin{gathered}
e^{3 x}\left(y^{\prime}+3 y\right)=9 e^{3 x} \Rightarrow \frac{d}{d x}\left(e^{3 x} y\right)=9 e^{3 x} \\
\Rightarrow e^{3 x} y=\int 9 e^{3 x} d x=3 e^{3 x}+C
\end{gathered}
$$

Dividing by the exponential $e^{3 x}$ (i.e. multiplying by $e^{-3 x}$) yields

$$
y=3+C e^{-3 x}
$$

as before. And substituting $y(0)=5$ implies $C=2$ as before.

