Math 2250 Week 1 Quiz

Name, UID, and section number:
Write your answer in the space provided. Show work for full credit.

1. (10 points) Verify that for every constant C , the functions $y(x)=-2+C e^{4 x}$ are solutions to the following differential equation:

$$
y^{\prime}-4 y=8
$$

Solution: Find y^{\prime} for $y(x)=-2+C e^{4 x}$:

$$
y^{\prime}(x)=4 C e^{4 x} .
$$

Plug in:

$$
y^{\prime}-4 y=4 C e^{4 x}-4\left(-2+C e^{4 x}\right)=4 C e^{4 x}+8-4 C e^{4 x}=8 .
$$

So, the functions $y(x)$ make the differential equation true; so they are solutions.
2. (10 points) A object moves along a number line, with position function $x(t) m$ at time t. This object is subject to an acceleration of $a(t)=8 \sin (2 t) \frac{m}{s^{2}}$. Its initial position and velocity are $x_{0}=0 m, v_{0}=0 \frac{\mathrm{~m}}{\mathrm{~s}}$. Find the position function $x(t)$.

Solution: Integrate the acceleration to find the velocity; then integrate the velocity to find the position:

$$
v^{\prime}(t)=a(t)=8 \sin (2 t) \Rightarrow v(t)=-4 \cos (2 t)+C .
$$

Since $v_{0}=0,0=-4+C$. Thus $C=4$ and $v(t)=-4 \cos (2 t)+4$. Integrating once more we find $x(t)$:

$$
\begin{array}{r}
x^{\prime}(t)=-4 \cos (2 t)+4 \Rightarrow x(t)=-2 \sin (2 t)+4 t+C . \\
x_{0}=0 \Rightarrow 0=0+0+C \Rightarrow C=0, \text { so } x(t)=-2 \sin (2 t)+4 t m .
\end{array}
$$

