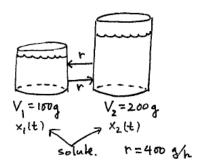
Math 2250-4 Mon Nov 25

- Finish last Friday's discussion of convolution solutions to inhomogeneous linear constant coefficient differential equations.
- Then begin:
- 7.1 Systems of differential equations to model multi-component systems via compartmental analysis: http://en.wikipedia.org/wiki/Multi-compartment_model

Here's a relatively simple 2-tank problem to illustrate the ideas:



Exercise 1) Find differential equations for solute amounts $x_1(t)$, $x_2(t)$ above, using input-output modeling. Assume solute concentration is uniform in each tank. If $x_1(0) = b_1$, $x_2(0) = b_2$, write down the initial value problem that you expect would have a unique solution.

answer (in matrix-vector form):

$$\begin{bmatrix} x_1'(t) \\ x_2'(t) \end{bmatrix} = \begin{bmatrix} -4 & 2 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

Geometric interpretation of first order systems of differential equations.

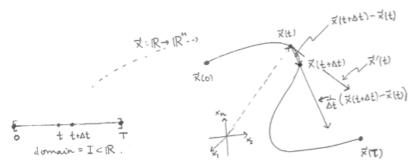
The example on page 1 is a special case of the general <u>initial value problem for a first order system of</u> differential equations:

$$\underline{\mathbf{x}}'(t) = \underline{\mathbf{F}}(t, \underline{\mathbf{x}}(t))$$
$$\underline{\mathbf{x}}(t_0) = \underline{\mathbf{x}}_0$$

• We will see how any single differential equation (of any order), or any system of differential equations (of any order) is equivalent to a larger first order system of differential equations. And we will discuss how the natural initial value problems correspond.

Why we expect IVP's for first order systems of DE's to have unique solutions x(t):

• From either a multivariable calculus course, or from physics, recall the geometric/physical interpretation of $\underline{x}'(t)$ as the tangent/velocity vector to the parametric curve of points with position vector $\underline{x}(t)$, as t varies. This picture should remind you of the discussion, but ask questions if this is new to you:



Analytically, the reason that the vector of derivatives $\underline{x}'(t)$ computed component by component is actually a limit of scaled secant vectors (and therefore a tangent/velocity vector) is:

$$\underline{\boldsymbol{x}}'(t) := \lim_{\Delta t \to 0} \frac{1}{\Delta t} \begin{bmatrix} x_1(t + \Delta t) \\ x_2(t + \Delta t) \\ \vdots \\ x_n(t + \Delta t) \end{bmatrix} - \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{bmatrix}$$

$$= \lim_{\Delta t \to 0} \begin{bmatrix} \frac{1}{\Delta t} \left(x_1(t + \Delta t) - x_1(t) \right) \\ \frac{1}{\Delta t} \left(x_2(t + \Delta t) - x_2(t) \right) \\ \vdots \\ \frac{1}{\Delta t} \left(x_n(t + \Delta t) - x_n(t) \right) \end{bmatrix} = \begin{bmatrix} x_1'(t) \\ x_2'(t) \\ \vdots \\ x_n'(t) \end{bmatrix},$$

provided each component function is differentiable. Therefore, the reason you expect a unique solution to the IVP for a first order system is that you know where you start $(\underline{x}(t_0) = \underline{x}_0)$, and you know your "velocity" vector (depending on time and current location) \Rightarrow you expect a unique solution! (Plus, you could use something like a vector version of Euler's method or the Runge-Kutta method to approximate it! And this is what numerical solvers do.)

Exercise 2) Return to the page 1 tank example

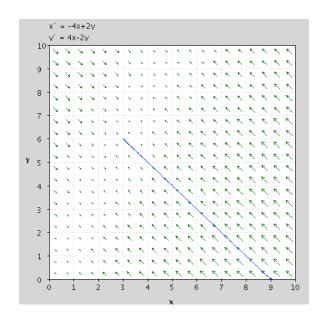
$$x_1'(t) = -4x_1 + 2x_2$$

 $x_2'(t) = 4x_1 - 2x_2$
 $x_1(0) = 9$
 $x_2(0) = 0$

<u>2a)</u> Interpret the parametric solution curve $[x_1(t), x_2(t)]^T$ to this IVP, as indicated in the pplane screen shot below. ("pplane" is the sister program to "dfield", that we were using in Chapters 1-2.) Notice how it follows the "velocity" vector field (which is time-independent), and how the "particle motion" location $[x_1(t), x_2(t)]^T$ is actually the vector of solute amounts in each tank. If your system involved ten coupled tanks rather than two, then this "particle" is moving around in \mathbb{R}^{10} .

<u>2b)</u> What are the apparent limiting solute amounts in each tank?

<u>2c)</u> How could your smart-alec younger sibling have told you the answer to 2<u>b</u> without considering any differential equations or "velocity vector fields" at all?



First order systems of differential equations of the form

$$\underline{x}'(t) = A \underline{x}$$

are called <u>linear homogeneous</u> systems of DE's. (Think of rewriting the system as

$$\underline{x}'(t) - A\underline{x} = \underline{0}$$

in analogy with how we wrote linear scalar differential equations.) Then the inhomogeneous system of first order DE's would be written as

$$\underline{\boldsymbol{x}}'(t) - A \underline{\boldsymbol{x}} = \underline{\boldsymbol{f}}(t)$$

or

$$\underline{\boldsymbol{x}}'(t) = A\,\underline{\boldsymbol{x}} + \underline{\boldsymbol{f}}(t)$$

Exercise 3a) Show the space of solutions $\underline{x}(t)$ to the <u>homogeneous system</u> of DE's

$$\underline{x}'(t) = A \underline{x}$$

is a <u>subspace</u>, so linear combinations of solutions are solutions.

3b) Look for a basis of solutions of the form

$$\underline{\mathbf{x}}(t) = \mathrm{e}^{\lambda t} \underline{\mathbf{v}},$$

where \underline{v} is a constant vector. Hint: In order for such an $\underline{x}(t)$ to solve the DE it must be true that

$$\underline{\mathbf{x}}'(t) = \lambda e^{\lambda t} \underline{\mathbf{v}}$$

and

$$A \underline{\mathbf{x}}(t) = A e^{\lambda t} \underline{\mathbf{v}} = e^{\lambda t} A \underline{\mathbf{v}}$$

must agree. <u>These functions of t will agree if and only</u> $\lambda \, \underline{v} = A \, \underline{v}$. So, it's time to find some eigenvalues and eigenvectors!

<u>3c)</u> Solve the initial value problem of <u>Exercise</u> 2!! Compare your solution $\underline{x}(t)$ to the parametric curve on the previous page.

Exercise 4) Lessons learned from tank example: What condition on the matrix $A_{n \times n}$ will allow you to uniquely solve every initial value problem

$$\underline{\boldsymbol{x}}'(t) = A \, \underline{\boldsymbol{x}}$$
$$\underline{\boldsymbol{x}}(0) = \underline{\boldsymbol{x}}_0 \in \mathbb{R}^n$$

using the method in Exercise 3? Hint: Chapter 6. (If that condition fails there are other ways to find the unique solutions.)