Math 2250-4

FINAL EXAM
December 17, 2013

This exam is closed-book and closed-note. You may use a scientific calculator, but not one which is
capable of graphing or of solving differential or linear algebra equations. Laplace Transform Tables are
included with this exam. In order to receive full or partial credit on any problem, you must show all
of your work and justify your conclusions. This exam counts for 30% of your course grade. It has
been written so that there are 150 points possible, and the point values for each problem are indicated in the
right-hand margin. Good Luck!



problem score  possible

1 40
2 o 15
3 - 15
4 o 15
5 25
6 - 10
7 30
total 150

1) Constant coefficient first order linear differential equations with constant right hand sides can be solved
with most of the techniques we studied in this course. Find the general solution to the differential equation
for x = x(t) below, using the specified techniques.

x'(t) +2x(t)=-8.

1a) Use the integrating factor technique for first order linear differential equations.
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1b) Use the technique for separable differential equations.
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1¢) Use the technique based on superposition of particular and homogeneous solutions. For your

convenience, the differential equation is repeated here:

x'(t)+2x(2)=-8.
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1d) Use Laplace transform. Note that in this case the free parameter in your solution will be the initial

value X,
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2) Here is a matrix and its reduced row echelon form: Xao Xy Ky Ay X

-2 2 24 1]p (10 -210]0
3-1-50 01}{o 01 -130]|C

A= - reduced row echelon form of A:
0 1 -13 -3\0 00 0011|0
3 2 -89 -2 |0 00 0O0O0}Q

2a) Find the solution space of vectors x that solve the homogeneous matrix equation Ax = 0. Write your
explicit solution (with free parameters), in linear combination form.
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2b) Itis easy to check that
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Use this fact and your work from 2a to write down the general solution to the inhomogeneous matrix

equation 4 x= b, where b= [1,-2,-4,-7 ]T is the vector on the right side of the matrix equation above.
Explain your reasoning.
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3) Find eigenvalues and eigenspace bases for the matrix below. Be careful to check your work, because
this matrix shows up in later problems. Hint: the eigenvalues should be negative integers.
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4) Consider the first order system of differential equations, that uses the matrix from the previous
exercise:

x' (1) -4 4| x
»' (1) 2 -6y
4a) Use your work fiom 3 to write down the general solution to this system of differential equations
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4b) Classify the equilbrium point at the origin. (Recall, the names we give these equilibrium points are
nodal sink, nodal source, saddle point, spiral sink, spiral source, and stable center.) Then sketch the phase
portrait for this linear system, using the eigendata of the matrix and the general solution from a.
(6 points)
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4¢) Consider the second order system of differential equations that has the same matrix:
x'! (t) -4 4
y'' (1) Z2 -6
This system could arise from a two mass, three spring system of the sort we have discussed in class.
What is the general solution in this case?
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5) Consider a general input-output model with two compartments as indicated below. The compartments
contain volumes V|, ¥, and solute amounts x; (¢), x, (2) respectively. The flow rates (volume per time) are

indicated by r,, i=1..6 . The two input concentrations (solute amount per volume) are ¢, c,.
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volumes Vl, V2 remain constant?
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b) Assuming the equalities in a hold, what first order system of differential equations governs the rates of
change for x, (), x, (¢) ?
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Then show that the genefal system in b reduces to the following system of DEs for the given parameter
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d) Find the general solution to the system of differential equations in part ¢. Hint: there is a particular

solution that is a constant vector. Note too that the matrix in this system is the same as in problems 3.4.
For your convenience, the system is repeated below:
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6) Consider the initial value problem below for an undamped mass-spring configuration subject to a
constant force for the first one second of motion, but unforced thereafter:

x'! (1) + x() =£ (1)

x(0)=0
x'(0)=0,
with
10, 0<51<1
f(t)=[ o i»1 = 10— 10wl
Use Laplace transform techniques to solve this IVP.
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7) We have studied and returned to the rigid rod pendulum several times in this course. This is the freely-
rotating configuration indicated in the diagram below, in which the rod is assumed to be massless of length

L, with a mass m at the end, and with angle displacement 8(¢) measured counterclockwise from the
vertical.
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Using conservation of energy in the no-drag case, we have derived the autonomous second order
differential equation that describes the angle 6(¢), arriving at

0’ (1) + %sin(e(t)) =0.

7a) Derive the differential equation above, using conservation of energy. Hint: Express the total energy in

terms of ©(¢) and 8’ (¢)and set its time derivative equal to zero since the total energy function is constant
once the pendulum is set in motion.
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7b) The second order DE in this problem,

0" (f) + %sin(e(t)) =0

is equivalent to the autonomous first order system of two differential equations
x'(1) =y
y'(t)=- —i—sin(x) .

Explain this equivalence.
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7¢) Find all equilibrium (i. solutions to the first order system of DE's above{ Explain h
these equilibrium solutions grerefated to the constant solutions and corresponding co/nﬁgura ons of the

second order differential gguation for rigid-rod pendulum.
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7d) For concreteness, suppose that L has been chosen to that —i— =4, i.e. so that the system is given by

x'()=y = Flay)
i EERARA

Use linearization and the Jacobian matrix to classify the equilbrium solutions to the first order system
above. Indicate what you can (and cannot) dedu€€ about the stabilityof these equilibrium solutions based
only on the linearization and the eigenvalues. (Hint: recall the names we give to the various possible
equilibrium points: nodal source, nodal sink, saddle point, spiral source, spiral sink, stable center.)
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Table of ;Laplace Transforms

This table summarizes the general properties of Luplace wransforms and the Lapluce transforms of particular functions

derived in Chapter 10.
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