
First-Order
Differential Equations

Differential Equations and Mathematical Models

The laws of the universe are written in the language of mathematics. Algebra
is sufficient to solve many static problems, but the most interesting natural

phenomena involve change and are described by equations that relate changing
quantities.

Because the derivative dx/dt = f’(t) of the function f is the rate at which
the quantity x f(t) is changing with respect to the independent variable t, it
is natural that equations involving derivatives are frequently used to describe the
changing universe. An equation relating an unknown function and one or more of

its derivatives is called a differential equation.

Example 1 The differential equation
dx 2 ‘+r

involves both the unknown function xQ) and its first derivative x’(t) = dx/dt. The
differential equation

d2y dy
— +3—+7y=Odx2 dx

involves the unknown function y of the independent variable x and the first two
derivatives y’ and y” of v. a

The study of differential equations has three principal goals:

1. To discover the differential equation that describes a specified physical
situation.

2. To find—either exactly or approximately—the appropriate solution of that
equation.

3. To interpret the solution that is found.
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In algebra, we typically seek the unknown numbers that satisfy an equation
such as x3 +7x2 — lix +41 = 0. By contrast, in solving a differential equation, we
are challenged to find the unknown functions v y(x) for which an identity such
as v’(x) = 2xv(x)—that is, the differential equation

d
— 2xy
dx

—holds on some interval of real numbers. Ordinarily, we will want to find all
solutions of the differential equation, if possible.

y(x) Cex, (1)

then
d ‘ / ‘ 7 \

C (2xe) = (2x) çCe) 2xy.
dx

Thus every function y(x) of the form in Eq. (1) satisfles—and thus is a solution
of—the differential equation

=2xy (2)

for all x. In particular, Eq. (1) defines an infinite family of different solutions of
this differential equation, one for each choice of the arbitrary constant C. By the

method of separation of variables (Section 1.4) it can be shown that every solution
of the differential equation in (2) is of the form in Eq. (1). 5

Differential Equations and Mathematical Models

The following three examples illustrate the process of translating scientific laws and
principles into differential equations. In each of these examples the independent
variable is time t, but we will see numerous examples in which some quantity other
than time is the independent variable.

Newton’s law of cooling may be stated in this way: The time rate of change (the
rate of change with respect to time t) of the temperature T(t) of a body is propor
tional to the difference between T and the temperature A of the surrounding medium
(Fig. 1.1.1). That is,

= —k(T — A), (3)

where k is a positive constant. Observe that if T > A, then dT/dt < 0, so the
temperature is a decreasing function of t and the body is cooling. But if T < A,
then dT/dt > 0, so that T is increasing.

Thus the physical law is translated into a differential equation. If we are given

the values of k and A, we should be able to find an explicit formula for TQ), and
then—with the aid of this formula—we can predict the future temperature of the
body. S

Torricelli’s law implies that the time rate of change of the volume V of water in a
draining tank (Fig. 1.1.2) is proportional to the square root of the depth y of water

in the tank:
dV

4)
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Example 2 If C is a constant and

Example 3

Temperature A

Temperature T

dx

cit

FIGURE 1.1.1. Newton’s law of
cooling. Eq. (3), describes the
cooling of a hot rock in water.

L Example 4
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where k is a constant. If the tank is a cylinder with vertical sides and cross-sectional

area A, then V = Ay, so dV/dt = A (dy/dt). In this case Eq. (4) takes the form

(5)

where h = k/A is a constant.

Example 5 The time rate of change of a population P(t) with constant birth and death rates is,

in many simple cases, proportional to the size of the population. That is,

(6)

where k is the constant of proportionality.

Vojurne
Let us discuss Example 5 further. Note first that each function of the form

__

P(t) = Cekt (7)

is a solution of the differential equation

dP
FIGURE 1.1.2. Torricelli’s law = kP

of draining, Eq. (4), describes the
t

draining of a water tank. in (6). We verify this assertion as follows:

P’(t) = Ckekt = k (Cekt) = kP(t)

for all real numbers t. Because substitution of each function of the form given in

(7) into Eq. (6) produces an identity, all such functions are solutions of Eq. (6).

Thus, even if the value of the constant k is known, the differential equation

dP/dt kP has infinitely main’ different solutions of the form P(t) = Ce’’, one for

each choice of the “arbitrary” constant C. This is typical of differential equations.

It is also fortunate, because it may allow us to use additional information to select

from among all these solutions a particular one that fits the situation under study.

Example 6 Suppose that P(t) = Cect is the population of a colony of bacteria at time t, that

the population at time t = 0 (hours, h) was 1000, and that the population doubled

after 1 h. This additional information about PQ) yields the following equations:

1000 = P(0) = Ce° = C,

2000 = P(l) Cek.

It follows that C = 1000 and that eC = 2, so k = In 2 0.693147. With this value

of k the differential equation in (6) is

dP
— = (1n2)P (0.693147)P.

Substitution of k In 2 and C = 1000 in Eq. (7) yields the particular solution

P(t) = 1000e2’= 1000(ebn2)t 1000 . 2’ (because et°2 = 2)

that satisfies the given conditions. We can use this particular solution to predict

•future populations of the bacteria colony. For instance, the predicted number of

bacteria in the population after one and a half hours (when t 1.5) is

P(1 .5) = 1000. 23/2 2828.
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The condition P(0) = 1000 in Example 6 is called an initial condition be

cause we frequently write differential equations for which t = 0 is the “starting

time.” Figure 1.1.3 shows several different graphs of the form PQ) = Ce’ with

k = 1n2. The graphs of all the infinitely many solutions of dP/dt = kP in fact fill

the entire two-dimensional plane, and no two intersect. Moreover, the selection of

any one point P0 on the P-axis amounts to a determination of P(0). Because ex

actly one solution passes through each such point, we see in this case that an initial

condition P(0) = P0 determines a unique solution agreeing with the given data.

Our brief discussion of population growth in Examples 5 and 6 illustrates the crucial

process of ,natheinatical mode/big (Fig. 1.1 .4), which involves the following:

1. The formulation of a real-world problem in mathematical terms; that is, the

construction of a mathematical model.

2. The analysis or solution of the resulting mathematical problem.

3. The interpretation of the mathematical results in the context of the original

real-world situation—for example, answering the question originally posed.

Real-world
situation

( Formulation ) (Interpretation)

[Mathematical 1/ Mathematical [Mathematical I
[odeli \ analysis I

FIGURE 1.1.4. The process of mathematical modeling.

In the population example, the real-world problem is that of determining the

population at some future time. A mathematical model consists of a list of vari

ables (P and t) that describe the given situation, together with one or more equations

relating these variables (dP/dt = kP. P(0) = F0) that are known or are assumed to

hold. The mathematical analysis consists of solving these equations (here, for P as

a function of t). Finally, we apply these mathematical results to attempt to answer

the original real-world question.

As an example of this process, think of first formulating the mathematical

model consisting of the equations dP/dt = kP. P(0) = 1000, describing the bac

teria population of Example 6. Then our mathematical analysis there consisted of

solving for the solution function P(t) = 1000e2)t = 1000 . 27 as our mathemat

ical result. For an interpretation in terms of our real-world situation—the actual

bacteria population—we substituted t = 1 .5 to obtain the predicted population of

P(L5) 2828 bacteria after 1.5 hours. If, for instance, the bacteria population is

growing under ideal conditions of unlimited space and food supply, our prediction

may be quite accurate, in which case we conclude that the mathematical model is

adequate for studying this particular population.

On the other hand, it may turn out that no solution of the selected differential

equation accurately fits the actual population we’re studying. For instance, for iw

choice of the constants C and k does the solution P(t) Ce<t in Eq. (7) accurately

C=12 C=6C=3
8

6

4

7

—7

—4

3
Mathematical Models

FIGURE 1.1.3. Graphs of
P(t) = Cekt withk =ln2.
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describe the actual growth of the human population of the world over the past few
centuries. We must conclude that the differential equation dP/dt kP is inad
equate for modeling the world population—which in recent decades has “leveled
off” as compared with the steeply climbing graphs in the upper half (P > 0) of
Fig. 1.1.3. With sufficient insight, we might formulate a new mathematical model
including a perhaps more complicated differential equation, one that takes into ac
count such factors as a limited food supply and the effect of increased population
on birth and death rates. With the formulation of this new mathematical model, we
may attempt to traverse once again the diagram of Fig. 1.1.4 in a counterclockwise
manner. If we can solve the new differential equation, we get new solution func
tions to compare with the real-world population. Indeed, a successful population
analysis may require refining the mathematical model still further as it is repeatedly
measured against real-world experience.

But in Example 6 we simply ignored any complicating factors that might af
fect our bacteria population. This made the mathematical analysis quite simple,
perhaps unrealistically so. A satisfactory mathematical model is subject to two con
tradictory requirements: It must be sufficiently detailed to represent the real-world
situation with relative accuracy, yet it must be sufficiently simple to make the math
ematical analysis practical. If the model is so detailed that it fully represents the
physical situation, then the mathematical analysis may be too difficult to carry out.
If the model is too simple, the results may be so inaccurate as to be useless. Thus
there is an inevitable tradeoff between what is physically realistic and what is math
ematically possible. The construction of a model that adequately bridges this gap
between realism and feasibility is therefore the most crucial and delicate step in
the process. Ways must be found to simplify the model mathematically without
sacrificing essential features of the real-world situation.

Mathematical models are discussed throughout this book. The remainder of
this introductory section is devoted to simple examples and to standard terminology
used in discussing differential equations and their solutions.

Examples and Terminology
Example 7 If C is a constant and v(x) 1/(C — x), then

the
dy 1 2an-
dx (C—i)2 ‘

ons
to ifx#C.Thus

as
v(x)

=

(8)
wer

-

_______ _______

Cxr I’
y= 1/(1 -x)

x

defines a solution of the differential equation

—=y_ (9)dx

on any interval of real numbers not containing the point x = C. Actually, Eq. (8)
defines a one-parameter family of solutions of dy/dx = ,2 one for each value of
the arbitrary constant or “parameter” C. With C = 1 we get the particular solution

y(x) =
1—s

that satisfies the initial condition y(O) 1. As indicated in Fig. 1.1.5, this solution
is continuous on the interval (—oc, 1) hut has a vertical asymptote at x = 1. I
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FIGURE 1.1.5. The solution of
= ,2 defined by

= l/(1 — x).
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Example 8 Verify that the function y(x) = 2x’12 —x12lnx satisfies the differential equation

4x2v”+y=O (10)

for allx >0.

Solution First we compute the derivatives

/ 1 —1’’ 1 —3/2 1 —3/’
1nx and y (x)z=x lnx—x

Then substitution into Eq. (10) yields

4x2y” + y = 4s2(x3I2lnx — x3’2)+ 2x’72 — x”2lnx 0

if x is positive, so the differential equation is satisfied for all x > 0.

The fact that we can write a differential equation is not enough to guarantee

that it has a solution. For example, it is clear that the differential equation

(y’)2 + y2 = —1 (11)

has no (real-valued) solution, because the sum of nonnegative numbers cannot be

negative. For a variation on this theme, note that the equation

(y’)2+y2=0 (12)

obviously has only the (real-valued) solution y(x) 0. In our previous examples

any differential equation having at least one solution indeed had infinitely many.

The order of a differential equation is the order of the highest derivative that

appears in it. The differential equation of Example 8 is of second order, those in

Examples 2 through 7 are first-order equations, and

(4)+213 +x5y = sinx

is a fourth-order equation. The most general form of an ,,th-order differential

equation with independent variable x and unknown function or dependent variable

y = (x) is
F (x, y, y’, y”,

..., = 0, (13)

where F is a specific real-valued function of n + 2 variables.

Our use of the word solution has been until now somewhat informal. To be

precise, we say that the continuous function u = u(x) is a solution of the lifferential

equation in (13) on the interval I provided that the derivatives u’, ii”, .
.., u(l> exist

on I and
F (x, ii. u’, U”, . . . , u’) = 0

for all x in I. For the sake of brevity, we may say that u = u(x) satisfies the

differential equation in (13) on I.

Remark: Recall from elementary calculus that a differentiable function on

an open interval is necessarily continuous there. This is why only a continuous

function can qualify as a (differentiable) solution of a differential equation on an

interval. J
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Figure 1.1.5 shows the two “connected” branches of the graph)’ = l/(l — x). The
left-hand branch is the graph of a (continuous) solution of the differential equation
y’ = ).2 that is defined on the interval (—oc, 1). The right-hand branch is the graph
of a different solution of the differential equation that is defined (and continuous)
on the different interval (1, cc). So the single formula y(x) = 1/(l — x) actually
defines two different solutions (with different domains of definition) of the same
differential equation v’ = y2.

If A and B are constants and

y(x) = Acos3x + Bsin3x, (14)

then two successive differentiations yield

= —3A sin 3x + 3B cos 3x,

= —9A cos 3x — 9B sin 3x = —9v()

for all x. Consequently, Eq. (14) defines what it is natural to call a two-parameter
family of solutions of the second-order differential equation

y”+9y=O (15)

on the whole real number line, Figure 1.1.6 shows the graphs of several such
solutions.

Although the differential equations in (11) and (12) are exceptions to the gen
eral rule, we will see that an nth-order differential equation ordinarily has an ii-

parameter family of solutions—one involving n different arbitrary constants or pa
rameters.

In both Eqs. (11) and (12), the appearance of y’ as an implicitly defined func
tion causes complications. For this reason, we will ordinarily assume that any dif
ferential equation under study can be solved explicitly for the highest derivative that
appears: that is, that the equation can be written in the so-called normal form

y)
= G (x, y, y’, v”, ..

.,
, (16)

where G is a real-valued function of ii + 1 variables. In addition, we will always
seek only real-valued solutions unless we warn the reader otherwise.

All the differential equations we have mentioned so far are ordinary differ
ential equations, meaning that the unknown function (dependent variable) depends
on only a single independent variable. If the dependent variable is a function of
two or more independent variables, then partial derivatives are likely to be involved;
if they are, the equation is called a partial differential equation. For example, the
temperature a = u(x, t) of a long thin uniform rod at the point x at time t satisfies
(under appropriate simple conditions) the partial differential equation

t 8x2

where k is a constant (called the the rmcil d(ffitsivitv of the rod). In this book we will
be concerned only with ordinar differential equations and will refer to them simply
as differential equations.

In this chapter we concentrate onfirst-order differential equations of the form

dy
— = f(x, y).
dx

Examp’e 9
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FIGURE 1.1.6. The three
solutions Yi (x) = 3 cos 3x,
y2(X) = 2sin3x, and
v3(x) = —3cos3x +2sin3x of
the differential equation
y” + 9y = 0.
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We also will sample the wide range of applications of such equations. A typical

mathematical model of an applied situation will be an initial value problem, con

sisting of a differential equation of the form in (17) together with an initial condi

tion y(xo) = y. Note that we call y(x0) = Yo an initial condition whether or not

Xo = 0. To solve the initial value problem

= f(x, ‘), y(xo) Yo (18)
dx

means to find a differentiable function v = y(x) that satisfies both conditions in

Eq. (18) on some interval containing xo.

Example 10 Given the solution y(x) 1/(C — x) of the differential equation dy/dx =

discussed in Example 7, solve the initial value problem

Problems

dv
= y, y(l) = 2.

dx

Solution We need only find a value of C so that the solution y(x) = l/(C — x) satisfies the

initial condition y(l) = 2. Substitution of the values x 1 and v = 2 in the given

solution yields

2=y(l)=
C—i’

so 2C — 2 = 1, and hence C = . With this value of C we obtain the desired

solution
1 2

3—2x

Figure 1.1.7 shows the two branches of the graph y = 2/(3 — 2x). The left-hand

branch is the graph on (—oc, ) of the solution of the given initial value problem
= )2 y(l) = 2. The right-hand branch passes through the point (2, —2) and is

therefore the graph on (, no) of the solution of the different initial value problem

y’ = y2, y(2) = —2.

The central question of greatest immediate interest to us is this: If we are given

a differential equation known to have a solution satisfying a given initial condition,

how do we actuallyfind or compute that solution? And, once found, what can we do

with it? We will see that a relatively few simple techniques—separation of variables

(Section 1 .4), solution of linear equations (Section 1.5), elementary substitution

methods (Section 1.6)—are enough to enable us to solve a variety of first-order

equations having impressive applications.

In Problems I through 12, verify by substitution that each

given function is a solution of the given differential equation.

Throughout these probleins, primes denote derivatives with re

spect to x.

1. y’ = 3x2; y = x3 ± 7
2. y’ +2y =0;y =3e
3. y” + 4y = 0; y = cos2x, )‘2 = sin2x
4. y” = 9)’; yi = e3, Y2 = e3
5• y!=y+2e_x;y__e —e

6. y” +4y’ + 4y = 0; y = e2’, y = xe_2x

7. y”—2y’-l-2y=O;yi =ecosx,y2=esin

8. y”+y = 3 cos2x, v = cosx—cos2x, 32 = sinx—c0S2X

9. y’ + 2xy2 = 0; y
= 1+r2

1O.x2yh/±xyl_ylnx;ylx_lflX,Y2_lnx

1 mx
11. X2)” -- 5xy’ + 4y = 0; y = —i, Y =x
12. x2y” — xy’ + 2y = 0; y = x cos(lnx), y2 x sin(lnx)

8 Chapter 1 First-Order Differential Equations
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FIGURE 1.1.7. The solutions of
= v2 defined by

y(x) = 2/(3 — 2x).
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In Problems 13 through 16, substitute v = e into the given
differential equation to determine all values of the constant r
for which v = e’ is a solution of the equation.

13. 3v’ = 2y 14. 4s”
15. y”+y’—2y=O 16. 3y”+3v’—4y=O

In Problems 17 through 26, first verify that y(x) satisfies the
given differential equation. Then determine a value of the con
stant C so that y(x) satisfies the given initial condition, Use a
computer or graphing calculator (if desired) to sketch several
typical solutions of the given differential equation, and high
light the one that satisfies the given initial condition.

17. y’ + y = 0; y(x) = Ce_x, y(O) = 2
18. ‘m” = 2V; y(x) = Ce”, y(0) = 3
19. y’ = y + I; (x) = C —1, y(O) = 5
20. yl=x_y;y(x)=Ce_x+x_1,y(0)= 10

21. y’ + 3x2y = 0; y(x) = Ce’3, y(O) = 7
22. ey’ = 1; y(x) = ln(x + C), y(O) = 0

23. x + 3y = 2x5; y(x) x5 + Cx3,y(2) = 1
dx

24. xy’
— 3v = x3; y(x) = x3(C +lnx), y(l) = 17

25. y’ = 3x2(2+ I); y(x) = tan(x3 + C), y(O) = 1
ired 26. y’ +ytanx = cosx; y(x) = (x + C)cosx, y(r) = 0

In Problems 27 through 31, a function y g(x) is described
by some geometric property of its graph. Write a differential
equation of the form dy/dx = f (x, y) having the function g
as its solution (or as one of its solutions).

27. The slope of the graph of g at the point (x, y) is the sum
of x and y.

28. The line tangent to the graph of g at the point (x, y) inter
sects the x-axis at the point (x/2. 0).

29. Every straight line normal to the graph of g passes through
the point (0, 1). Can you guess what the graph of such a
function g might look like?

30. The graph of g is normal to every curse of the form
y = x2 + k (k is a constant) where they meet.

31. The line tangent to the graph of g at (x, y) passes through
the point (—y, x).

In Problems 32 through 36, write—in the manner of Eqs. (3)
through (6) of this section—a differential equation that is a
niatheinatical model of the situation described.

32. The time rate of change of a population P is proportional
to the square root of P.

33. The time rate of change of the velocity v of a coasting
motorboat is proportional to the square of v.

34. The acceleration dv/dt of a Lamborghini is proportional
to the difference between 250 km/h and the velocity of the
car.

flX 35. In a city having a fixed population of P persons, the tune
rate of change of the number N of those persons who have
heard a certain rumor is proportional to the number of
those who have not yet heard the rumor.

36. In a city with a fixed population of P persons, the time rate
of change of the number N of those persons infected with
a certain contagious disease is proportional to the product
of the number who have the disease and the number who
do not.

In Problems 37 through 42, determine by inspection at least
one solution of the given differential equation. That is, use
your knowledge of derivatives to make an intelligent guess.
Then test ‘our hypothesis.

37. v” = 0 38. y’ = y

39. xv’ + y = 3x2 40. (y’)2 + y2 = 1

41. y’+y—e’ 42. y”+y=O

43. (a) If k is a constant, show that a general (one-parameter)
solution of the differential equation

dx 2
— = kx

is given by x(t) = 1/(C —kt), where C is an arbitrary
constant.

(b) Determine by inspection a solution of the initial value
problem x’ kx2, x(0) = 0.

44. (a) Continuing Problem 43, assume that k is positive, and
then sketch graphs of solutions of x’ = kx2 with sev
eral typical positive values of x(0).

(b) How would these solutions differ if the constant k
were negative?

45. Suppose a population P of rodents satisfies the differen
tial equation dP/dr kP. Initially, there are P(0) = 2
rodents, and their number is increasing at the rate of
dP/dt = 1 rodent per month when there are P = 10 ro
dents. How long will it take for this population to grow
to a hundred rodents? To a thousand? What’s happening
here?

46. Suppose the velocity a of a motorboat coasting in water
satisfies the differential equation dv/dt = kv2. The initial
speed of the motorboat is v(0) 10 meters per second
(mis), and a is decreasing at the rate of I rn/s2 when a = 5
mis. How long does it take for the velocity of the boat to
decrease to I mis? To m/s? When does the boat come
to a stop?

47. In Example 7 we saw that y(x) = 1/(C — x) defines
a one-parameter family of solutions of the differential
equation dy/dx y2. (a) Determine a value of C so
that y(10) = 10. (b) Is there a value of C such that
y(O) = 0? Can you nevertheless find by inspection a
solution of dv/dx = y2 such that s’ (0) = 0? (c) Figure
1. 1.8 shows typical graphs of solutions of the form y (x) =

I/(C — x). Does it appear that these solution curves fill the
entire xv-plane? Can you conclude that, given any point
(a, b) in the plane, the differential equation dy/dx =

has exactly one solution y(x) satisfying the condition
y(a) =

al
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FIGURE 1.1.8. Graphs of solutions of the
equation dy/dx =

48. (a) Show that y(x) = Cx4 defines a one-parameter fam
ily of differentiable solutions of the differential equation
xy’ 4’ (Fig. 1.1.9). (b) Show that

—x4 ifx < 0,
(x)

x4 ifx 0

FIGURE 1.1.9. The graph v = Cx4 for
various values of C.

defines a differentiable solution of xy’ = 4y for all x, but
is not of the form y(x) = Cx4. (c) Given any two real
numbers a and b. explain why—in contrast to the situa
tion in part (c) of Problem 47—there exist infinitely many
differentiable solutions of xv’ = 4)’ that all satisfy the
condition y(a) = b.

Integrals as General and Particular Solutions

The first-order equation dy/dx = f(x, y) takes an especially simple form if the

right-hand-side function f does not actually involve the dependent variable v, so

d
= f(x).

dx

In this special case we need only integrate both sides of Eq. (1) to obtain

= f fdx + C. (2)

This is a general solution of Eq. (1), meaning that it involves an arbitrary constant

C, and for every choice of C it is a solution of the differential equation in (1). If

G(x) is a particular antiderivative of f—that is, if G’(x) f(x)—then

y(x) = G(x) + C. (3)

The graphs of any two such solutions y (x) = Go + C and 2(x)
G(x) ± C2 on the same interval I are “parallel” in the sense illustrated by Figs. 1.2.1

and 1 .2.2. There we see that the constant C is geometrically the vertical distance

between the two curves )‘(x) G(x) and y(x) = G(x) + C.
To satisfy an initial condition y(xo) = Yo we need only substitute x = s0 and

= Yo into Eq. (3) to obtain Yo = G(x0)+ C, so that C = Yo — G(xo). With this

choice of C, we obtain the particular solution of Eq. (1) satisfying the initial value

problem

dv
= f, v(x) = Yo.

C=-2 C=-1 C=O C=I C=2 C3
3

C4

—2

sI -2\ -1 \ LN 1 2 N
C-3C=-2C=-1 C=OC=1 C=2

x S

(1)
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=

We will see that this is the typical pattern for solutions of first-order differential
equations. Ordinarily, we will first find a general solution involving an arbitrary
constant C. We can then attempt to obtain, by appropriate choice of C, a particular
solution satisfying a given initial condition v(xo) = 30.

Remark: As the term is used in the previous paragraph, a general solution
of a first-order differential equation is simply a one-parameter family of solutions.
A natural question is whether a given general solution contains eveiy particular
solution of the differential equation. When this is known to be true, we call it
the general solution of the differential equation. For example, because any two
antiderivatives of the same function f(x) can differ only by a constant, it follows
that every solution of Eq. (1) is of the form in (2). Thus Eq. (2) serves to define the
general solution of (1).

=2x+3, y(l)=2.
dx

4

3

6

4
,C=4

N - C=2 -

,r••_— — -

C=0N

‘ N

c=-1

C= -2

FIGURE 1.2.1. Graphs of
= 12 + C for various values of C.

—2

—4

x

C = —2 - - -

—4 —2 0 2 4 6

FIGURE 1.2.2. Graphs of
y = sins + C for various values of C.

but
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‘i,’!U %\\

—/ H -N — H-2-
‘\d=o ,,
‘\ // -

—4
-

‘N-6
- \C=-4/ -

-8
- C-6

—if)
I

Example 1 Solve the initial value problem

Soluflon Integration of both sides of the differential equation as in Eq. (2) immediately yields
the general solution

y(x) f(2x + 3) dx = x2 + 3x + C.

Figure 1.2.3 shows the graph y = x2 + 3x + C for various values of C. The
particular solution we seek colTesponds to the curve that passes through the point
(1, 2), thereby satisfying the initial condition

= (1)2 + 3. (1) + C = 2.

It follows that C = —2, so the desired particular solution is

x
6 —4 —2 )

FIGURE 1.2.3. Solution curves
for the differential equation in
Example 1.

y(x)=x2+3x—2.
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Second-order equations. The observation that the special first-order equation

dy/dx = f (x) is readily solvable (provided that an antiderivative of f can be found)

extends to second-order differential equations of the special form

= g(x), (4)

in which the function g on the right-hand side involves neither the dependent vari

able y nor its derivative dy/dx. We simply integrate once to obtain

=fy”xs f gxx G(x)+ C1,
dx

where G is an antiderivative of g and Ci is an arbitrary constant. Then another

integration yields

y(x)
= f y’(x)dx = f[G(x) + C1] dx f G(x)dx + Cjx + C2,

where C2 is a second arbitrary constant. In effect, the second-order differential

equation in (4) is one that can be solved by solving successively the first-order

equations
dv dy
— = g(x) and — v(x).
dx dx

Velocity and Acceleration

Direct integration is sufficient to allow us to solve a number of important problems

concerning the motion of a particle (or mass point) in terms of the forces acting

on it. The motion of a particle along a straight line (the x-axis) is described by its

position function

x = f(t) (5)

giving its x-coordinate at time t. The velocity of the particle is defined to be

v(t) = f’(t); that is, v = (6)

Its acceleration a(t) is a(t) v’(t) = x”(t); in Leibniz notation,

dv d2x
a=—=—. (7)

dt dt2

Equation (6) is sometimes applied either in the indefinite integral form x (t) =

f v(t) dt or in the definite integral form

x(t) =x(to)+f v(s)ds,

which you should recognize as a statement of the fundamental theorem of calculus

(precisely because dx/dt = v).
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Newton’s second law of motion says that if a force F(t) acts on the particle
and is directed along its line of motion, then

rna(t) = F(t); that is, F = ma, (8)

where in is the mass of the particle. If the force F is known. then the equation
x”(t) F(t)/m can he integrated twice to find the position function x(t) in terms
of two constants of integration. These two arbitrary constants are frequently deter
mined by the initial position xo = x(0) and the initial velocity vo = v(0) of the
particle.

Constant acceleration. For instance, suppose that the force F, and therefore the
acceleration a = F/rn, are constant. Then we begin with the equation

dv
= a (a is a constant) (9)

ial and integrate both sides to obtain

er

v(t) = fadt = at + Ci.

We know that v = v0 when t = 0, and substitution of this information into the
preceding equation yields the fact that C1 vo. So

ms
Lng dx
its v(t) = = at + vo. (10)

A second integration gives

x(t)
= f v(t)dt f(at + vo)dt = at2 + v0t + C2,

and the substitution t = 0, x x0 gives C2 = xO. Therefore,

x(t) =at2+vot+xo. (11)

Thus, with Eq. (10) we can find the velocity, and with Eq. (ii) the position, of
the particle at any time t in terms of its constant acceleration a, its initial velocity
v0, and its initial position Xo.

Example 2 A lunar lander is falling freely toward the surface of the moon at a speed of 450
meters per second (m/s). Its retrorockets, when fired, provide a constant decel
eration of 2.5 meters per second per second (m/s2) (the gravitational acceleration
produced by the moon is assumed to be included in the given deceleration). At what

ulus height above the lunar surface should the retrorockets be activated to ensure a “soft
touchdown” (v = 0 at impact)?
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Soiution We denote by x(t) the height of the lunar lander above the surface, as indicated
in Fig. 1.2.4. We let t = 0 denote the time at which the retrorockets should be
fired. Then v0 = —450 (rn/s. negative because the height x(t) is decreasing), and
a = +2.5, because an upward thrust increases the velocity v (although it decreases
the speed IvD. Then Eqs. (10) and (11) become

v(t) = 2.5t —450 (12)

and
Lunar surface x (t) = 1 .25t — 450t + X0,

where x0 is the height of the lander above the lunar surface at the time t = 0 when
the retrorockets should be activated.

From Eq. (12) we see that v = 0 (soft touchdown) occurs when t 450/2.5 =

180 s (that is, 3 minutes); then substitution oft 180, x = 0 into Eq. (13) yields

= 0— (1.25)(180)2 + 450(180) = 40,500

meters—that is, x0 = 40.5 km 25 miles. Thus the retrorockets should be acti
vated when the lunar lander is 40.5 kilometers above the surface of the moon, and it
will touch down softly on the lunar surface after 3 minutes of decelerating descent.

Physical Units

Numerical work requires units for the measurement of physical quantities such as
distance and time. We sometimes use ad hoc units—such as distance in miles or
kilometers and time in hours—in special situations (such as in a problem involving
an auto trip). However, the foot-pound-second (fps) and meter-kilogram-second
(mks) unit systems are used more generally in scientific and engineering problems.
In fact, fps units are commonly used only in the United States (and a few other
countries), while mks units constitute the standard international system of scientific
units.

fps units mks units

Force pound (ib) newton (N)
Mass slug kilogram (kg)
Distance foot (ft) meter (m)
Time second (s) second (s)

g 32 ft/s2 9.8 rn/s2

The last line of this table gives values for the gravitational acceleration g at
the surface of the earth. Although these approximate values will suffice for most
examples and problems, more precise values are 9.7805 m/s2 and 32.088 ft/s2 (at
sea level at the equator).

Both systems are compatible with Newton’s second law F ma. Thus 1 N is
(by definition) the force required to impart an acceleration of I rn/s2 to a mass of 1
kg. Similarly, 1 slug is (by definition) the mass that experiences an acceleration of
1 ft/s2 under a force of 1 lb. (We will use mks units in all problems requiring mass
units and thus will rarely need slugs to measure mass.)

at
V

FIGURE 1.2.4. The lunar lander
of Example 2.

I

I

(13)

L
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ed Inches and centimeters (as well as miles and kilometers) also are commonly
be used in describing distances. For conversions between fps and mks units it helps to
nd remember that
;es

1 in. 2.54 cm (exactly) and 1 lb 4.448 N.

For instance,

1 ft 12 in. x 2.54 = 30.48 cm,
In.

and it follows that

ien 1 mi 5280 ft x 30.48 = 160934.4cm 1.609 km.

Thus a posted U.S. speed limit of 50 mi/h means that—in international terms—the
legal speed limit is about 50 x 1.609 80.45 km/h.

Vertical Motion with Gravitational Acceleration
cd- The weight W of a body is the force exerted on the body by gravity. Substitution
d it of a = g and F W in Newton’s second law F = ma gives

j W=mg (14)

for the weight W of the mass m at the surface of the earth (where g 32 ft/s2 9.8

h as m/s2). For instance, a mass of ni = 20kg has a weight of W = (20 kg)(9.8 m/s2) =

s or 196 N. Similarly, a mass in weighing 100 pounds has mks weight
ving
ond W = (100 lb)(4.448 N/Ib) = 444.8 N,
ems.
)ther so its mass is
itific W 444.8 N

rn=—= 45.4kg.
g 9.8 rn/s2

To discuss vertical motion it is natural to choose the y-axis as the cordinate
system for position, frequently with y = 0 corresponding to “ground level.” If we
choose the upward direction as the positive direction, then the effect of gravity on a
vertically moving body is to decrease its height and also to decrease its velocity v
dy/dt. Consequently. if we ignore air resistance, then the acceleration a dv/dt of
the body is given by

dv
(15)

i g at This acceleration equation provides a starting point in many problems involving

most vertical motion. Successive integrations (as in Eqs. (10) and (11)) yield the velocity
2 (at and height formulas

v(t) = —gt + vo (16)
iNis and
s of 1

yQ) = —gt2 + vot + Yo. (17)
ion of
mass

Here, Yo denotes the initial (t = 0) height of the body and v0 its initial velocity.
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Example 3 (a) Suppose that a ball is thrown straight upward from the ground (Yo = 0) with
initial velocity 00 96 (ft/s, so we use g 32 ft/s2 in fps units). Then it reaches
its maximum height when its velocity (Eq. (16)) is zero,

v(t) = —32t + 96 0,

and thus when t = 3 s. Hence the maximum height that the ball attains is

y(3) .32.32 + 96.3 + 0 = 144 (ft)

dy —

3(1 — 4x2).

Integration yields

y(x) =f(3 — 12x2)dx = 3x —4x3 +C

vs

(with the aid of Eq. (17)).
(b) If an arrow is shot straight upward from the ground with initial velocity CO = 49
(m/s, so we use g = 9.8 m/s2 in mks units), then it returns to the ground when

y(t) = —•(9.8)t2+49t= (4.9)t(—t+l0) =0,

and thus after 10 s in the air.

A Swimmer’s Problem

Figure 1.2.5 shows a northward-flowing river of width w 2a. The lines x =

represent the banks of the river and the y-axis its center. Suppose that the velocity
VR at which the water flows increases as one approaches the center of the river, and
indeed is given in terms of distance x from the center by

VR=VO(1_). (18)

You can use Eq. (18) to verify that the water does flow the fastest at the center,
where 0R = v0, and that VR = 0 at each riverbank.

Suppose that a swimmer starts at the point (—a, 0) on the west bank and swims
due east (relative to the water) with constant speed VS. As indicated in Fig. 1.2.5, his
velocity vector (relative to the riverbed) has horizontal component V5 and vertical
component 0R. Hence the swimmer’s direction angle is given by

VR
tanc = —.

VS

Because tan = d/dx, substitution using (18) gives the differential equation

(19)

for the swimmer’s trajectory y = y(x) as he crosses the river.

Suppose that the river is 1 mile wide and that its midstream velocity is CO = 9 mi/h.
If the swimmer’s velocity is VS = 3 mi/h, then Eq. (19) takes the form

x-axis

FIGURE 1.2.5. A swimmer’s
problem (Example 4).

Example 4
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for the swimmer’s trajectory, The initial condition y (— ) = 0 yields C 1, so
aes

= 3x — 4x3 + 1.

Then

so the swimmer drifts 2 miles downstream while he swims 1 mile across the river.

49 -roblerns

in Problems I through 10, find aflinction y = f(x) satisfy- 19.
ing the given differential equation and the prescribed initial
condition.

1. =2x+1;y(0)=3
dx

dv
2. = (x — 2)-:y (2) = 1

dv
3. —-- = y(4) = 0

dx

4. = -; y(l) = 5

.

iter, 6. = xr2 + 9; y(—4) 0
dx

Np

-‘—C

city
and

ic

8

6
5)

4

: :,
FIGURE 1.2.6. Graph of the
velocity function V(t) of Problem 19.

20. 10

8

6
II.1 10

;y(0)=0 8. -=cos2x;y(0)=i
, his dx x2 + 1 - dx . . (5, 5).
tical dv I dv 4 /9. —= ;v(0)=0 10. ——=xe;v(0)=l 7dx /l_x2 dx

2
,/

in Problems 11 through 18, find the position function x(t) ofa
/moving particle with the given acceleration a(t), initial posi- 0

tion x0 = x(0), and initial velocity t = v(0).

11. a(t) = 50, V0 = 10, 5 = 20 FIGURE 1.2.7. Graph of the
12. a(t) = —20, t = —15, x0 5 velocity function u(t) of Problem 20.

13. a(t) = 3t, v0 = 5, Xo 0 21. 10

14. a(t)=2t+1,v0—7,xn=4
815. a(t) =4(t-f-3)2,Uo 1,xo =

16. a(t)
=

, V0 —1, X = 1 6
(55)

17. a(t)
= (t + 1)

‘ V0 = 0, o = 0 /
18. a(t) 5Osin5t, i) = —10,x0 = 8 2 . >.

In Problems 19 through 22, a particle starts at the origin and o
travels along the x -axis with the velocity fimction V (t) whose
graph is show,i Figs. 1.2.6 through 1.2.9. Sketch the graph FIGURE 1.2.8. Graph of theof the resulting position function x(t)for 0 t 10. velocity function V(t) of Problem 21.
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T

FIGURE 1.2.9. Graph of the
velocity function v(t) of Problem 22.

23. What is the maximum height attained by the arrow of part
(b) of Example 3?

24. A ball is dropped from the top of a building 400 ft high.
How long does it take to reach the ground? With what
speed does the ball strike the ground?

25. The brakes of a car are applied when it is moving at [00
km/h and provide a constant deceleration of 10 meters per
second per second (m/s2). How far does the car travel be
fore coming to a stop?

26. A projectile is fired straight upward with an initial veloc
ity of 100 rn/s from the top of a building 20 m high and
falls to the ground at the base of the building. Find (a) its
maximum height above the ground; (b) when it passes the
top of the building; (c) its total time in the air.

27. A ball is thrown straight downward from the top of a tall
building. The initial speed of the ball is 10 rn/s. It strikes
the ground with a speed of 60 rn/s. How tall is the build
ing?

28. A baseball is thrown straight downward with an initial
speed of 40 ft/s from the top of the Washington Monu
ment (555 ft high). How long does it take to reach the
ground, and with what speed does the baseball strike the
ground?

29. A diesel car gradually speeds up so that for the first 10 s
its acceleration is given by

= (0.12)t2 + (0.6)t (ft/s2).

If the car starts from rest (Xo = 0, a0 = 0), find the dis
tance it has traveled at the end of the first JO s and its
velocity at that time.

30. A car traveling at 60 mi/h (88 ft/s) skids 176 ft after its
brakes are suddenly applied. Under the assumption that
the braking system provides constant deceleration, what
is that deceleration? For how long does the skid continue?

31. The skid marks made by an automobile indicated that its
brakes were fully applied for a distance of 75 rn before it

came to a stop. The car in question is known to have a con
stant deceleration of 20 rn/s2 under these conditions. How

fast—in km/h—was the car traveling when the brakes

were first applied?

32. Suppose that a car skids 15 m if it is moving at 50 km/h
when the brakes are applied. Assuming that the car has
the same constant deceleration, how far will it skid if it is
moving at 100 km/h when the brakes are applied?

33. On the planet Gzyx, a ball dropped from a height of 20 ft
hits the ground in 2 s. If a ball is dropped from the top of
a 200-ft-tall building on Gzyx, how long will it take to hit
the ground? With what speed will it hit?

34. A person can throw a ball straight upward from the sur
face of the earth to a maximum height of 144 ft. How
high could this person throw the ball on the planet Gzyx
of Problem 33?

35. A stone is dropped from rest at an initial height Ii above
the surface of the earth. Show that the speed with which it
strikes the ground is a =

36. Suppose a woman has enough “spring” in her legs to jump
(on earth) from the ground to a height of 2.25 feet. If
she jumps straight upward with the same initial velocity
on the moon—where the surface gravitational acceleration

is (approximately) 5.3 ftls2—how high above the surface
will she rise?

37. At noon a car starts from rest at point A and proceeds at
constant acceleration along a straight road toward point
B. If the car reaches B at 12:50 P.M. with a velocity of
60 mi/h, what is the distance from A to B?

38. At noon a car starts from rest at point A and proceeds with
constant acceleration along a straight road toward point C,
35 miles away. If the constantly accelerated car arrives at
C with a velocity of 60 mi/h, at what time does it arrive
at C?

39. If a = 0.5 mi and a0 = 9 mi/h as in Example 4, what
must the swimmer’s speed u5 be in order that he drifts
only I mile downstream as he crosses the river?

40. Suppose that a = 0.5 mi, a0 9 mi/h, and 0S = 3 mi/h
as in Example 4, but that the velocity of the river is given
by the fourth-degree function

VR = 0 (i
—

rather than the quadratic function in Eq. (18). Now find
how far downstream the swimmer drifts as he crosses the
river.

41. A bomb is dropped from a helicopter hovering at an alti
tude of 800 feet above the ground. From the ground di
rectly beneath the helicopter, a projectile is fired straight
upward toward the bomb, exactly 2 seconds after the bomb
is released. With what initial velocity should the projectile
be fired, in order to hit the bomb at an altitude of exactly
400 feet?

42. A spacecraft is in free fall toward the surface of the moon
at a speed of 1000 mph (mi/h). Its retrorockets, when
fired, provide a constant deceleration of 20,000 mi/h2. At
what height above the lunar surface should the astronauts
fire the retrorockets to insure a soft touchdown? (As in
Example 2, ignore the moon’s gravitational field.)

22. 10

8

6 a (35) (7,5)

4 ,.../....

/‘ a

L
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43. Arthur Clarke’s The Wind from the Sun (1963) describes
Diana, a spacecraft propelled by the solar wind. Its alu
minized sail provides it with a constant acceleration of
0.OOlg 0.0098 mIs2. Suppose this spacecraft starts
from rest at time t = 0 and simultaneously fires a pro
jectile (straight ahead in the same direction) that travels at
one-tenth of the speed c 3 x 108 m/s of light. How long
will it take the spacecraft to catch up with the projectile,

and how far will it have traveled by then?
44. A driver involved in an accident claims he was going only

25 mph. When police tested his car, they found that when
its brakes were applied at 25 mph, the car skidded only
45 feet before coming to a stop. But the driver’s skid
marks at the accident scene measured 210 feet. Assum
ing the same (constant) deceleration, determine the speed
he was actually traveling just prior to the accident.
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Consider a differential equation of the form

(1)dx

where the right-hand function f(x, y) involves both the independent variable x and
the dependent variable y. We might think of integrating both sides in (1) with re
spect to x, and hence write v(x) = f f(x, (x))dx + C. However, this approach
does not lead to a solution of the differential equation, because the indicated integral
involves the unknown function y(x) itself, and therefore cannot be evaluated explic
itly. Actually, there exists no straightforward procedure by which a general differen

/ tial eqLlation can be solved explicitly. Indeed, the solutions of such a simple-looking
differential equation as y’ = x2 + y2 cannot be expressed in terms of the ordinary
elementary functions studied in calculus textbooks. Nevertheless, the graphical and
numerical methods of this and later sections can be used to construct approximate
solutions of differential equations that suffice for many practical purposes.

Slope Fields and Graphical Solutions

There is a simple geometric way to think about solutions of a given differential
equation y’ = f(x, y). At each point (x, y) of the xv-plane, the value of .f(x, 3’)
determines a slope in = f(x, ‘y). A solution of the differential equation is simply a
differentiable function whose graph y = y(x) has this “correct slope” at each point
(x, y(x)) through which it passes—that is, y’(x) = f(x, y(x)). Thus a solution
curve of the differential equation y’ = f(x, y)—the graph of a solution of the
equation—is simply a curve in the xy-plane whose tangent line at each point (x, y)
has slope in = f(x, y). For instance, Fig. 1.3.1 shows a solution curve of the
differential equation y’ = x — y together with its tangent lines at three typical
points.

This geometric viewpoint suggests a graphical method for constructing ap
proximate solutions of the differential equation y’ = f(x, y). Through each of a
representative collection of points (x, ‘) in the plane we draw a short line segment
having the proper slope in = f(x, y). All these line segments constitute a slope
field (or a direction field) for the equation y’ = f(x, y).

Figures 1.3.2 (a)—(d) show slope fields and solution curves for the differential equa
tion

=ky (2)dx

with the values k = 2, 0.5, —1, and —3 of the parameter k in Eq. (2). Note that each
slope field yields important qualitative information about the set of all solutions

FIGURE 1.3.1. A solution curve
for the differential equation

x — y together with tangent
lines having

‘ • slope in1 = x1
— y at the

point (x1, yl);
• slope in2 X2

— Y2 at the
point (X3, y2); and

• slope 1113 = X3
— at the

point (x3,

Examp’e 1
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of the differential equation. For instance, Figs. 1.3.2(a) and (b) suggest that each
solution y(x) approaches +00 as x — +00 if k > 0, whereas Figs. 1.3.2(c) and
(d) suggest that y(x) — 0 as x -+ +00 if k < 0. Moreover, although the sign
of k determines the direction of increase or decrease of y(x), its absolute value Iki
appears to determine the rate of change of y(x). All this is apparent from slope
fields like those in Fig. 1 .3.2, even without knowing that the general solution of
Eq. (2) is given explicitly by y(x) = Ce.

A slope field suggests visually the general shapes of solution curves of the
differential equation. Through each point a solution curve should proceed in such
a direction that its tangent line is nearly parallel to the nearby line segments of the
slope field. Starting at any initial point (a, b), we can attempt to sketch freehand an
approximate solution curve that threads its way through the slope field, following
the visible line segments as closely as possible.

Examp’e 2 Construct a slope field for the differential equation y’ = x — y and use it to sketch
an approximate solution curve that passes through the point (—4, 4).

Souflon Figure 1.3.3 shows a table of slopes for the given equation. The numerical slope
in = x — y appears at the intersection of the horizontal x-row and the vertical
y-column of the table. If you inspect the pattern of upper-left to lower-right di
agonals in this table, you can see that it was easily and quickly constructed. (Of
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—4 —3 —2 —1 0 1 2 3 4

—4 0 —1 —2 —3 —4 —5 —6 —7 —8

—3 1 0 —1 —2 —3 —4 —5 —6 —7
—2 2 1 0 —1 —2 —3 —4 —5 —6

—1 3 2 1 0 —1 —2 —3 —4 —5

0 4 3 2 1 0 —1 —2 —3 —4

1 5 4 3 2 1 0 —1 —2 —3

2 6 5 4 3 2 1 0 —1 —2

3 7 6 5 4 3 2 1 0 —1

4 8 7 6 5 4 3 2 1 0

FIGURE 1.3.3. Values of the slope y’ = x — y for —4 x, y 4.
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FIGURE 1.3.4. Slope field for FIGURE 1.3.5. The solution
= x

—
y corresponding to the curve through (—4,4).

table of slopes in Fig. 1.3.3.

course, a more complicated function f(x, y) on the right-hand side of the differen
tial equation would necessitate more complicated calculations.) Figure 1,3.4 shows
the corresponding slope field, and Fig. 1.3.5 shows an approximate solution curve
sketched through the point (—4, 4) so as to follow this slope field as closely as pos
sible. At each point it appears to proceed in the direction indicated by the nearby
line segments of the slope field.

Although a spreadsheet program (for instance) i’eadily constructs a table of
slopes as in Fig. 1.3.3, it can be quite tedious to plot by hand a sufficient number
of slope segments as in Fig. 1.3.4. However, most computer algebra systems in
dude commands for quick and ready construction of slope fields with as many line
segments as desired; such commands are illustrated in the application material for
this section. The more line segments are constructed, the more accurately solution
curves can be visualized and sketched. Figure 1.3.6 shows a “finer” slope field for
the differential equation y’ = x — y of Example 2, together with typical solution
curves treading through this slope field.

If you look closely at Fig. 1.3.6, you may spot a solution curve that appears
to be a straight line! Indeed, you can verify that the linear function y = x — I is
a solution of the equation y’ x — y, and it appears likely that the other solution
curves approach this straight line as an asymptote as x —± +00. This inference
illustrates the fact that a slope field can suggest tangible information about solutions
that is not at all evident from the differential equation itself. Can you, by tracing the

—4—3—2—10 1 2 3 4

FIGURE 1.3.6. Slope field and
typical solution curves for
yl = —



22 Chapter 1 First-Order Differential Equations

appropriate solution curve in this figure, infer that y(3) 2 for the solution vx) of
the initial value problem y’ = x

—

y, y(—4) 4?

Applications of Slope Fields

The next two examples illustrate the use of slope fields to glean useful information
in physical situations that are modeled by differential equations. Example 3 is based
on the fact that a baseball moving through the air at a moderate speed v (less than
about 300 ft/s) encounters air resistance that is approximately proportional to v. If
the baseball is thrown straight downward from the top of a tall building or from a
hovering helicopter, then it experiences both the downward acceleration of gravity
and an upward acceleration of air resistance. If the y-axis is directed downward,
then the ball’s velocity v = dy/dt and its gravitational acceleration g = 32 ft/s2 are
both positive, while its acceleration due to air resistance is negative. Hence its total
acceleration is of the form

=g—kv. (3)

A typical value of the air resistance proportionality constant might be k = 0.16.

Suppose you throw a baseball straight downward from a helicopter hovering at an
altitude of 3000 feet. You wonder whether someone standing on the ground below
could conceivably catch it. In order to estimate the speed with which the ball will

______________________

land, you can use your laptop’s computer algebra system to construct a slope field
for the differential equation

=32—0.l6v. (4)

The result is shown in Fig. 1.3.7, together with a number of solution curves
corresponding to different values of the initial velocity v(0) with which you might
throw the baseball downward. Note that all these solution curves appear to approach
the horizontal line v = 200 as an asymptote. This implies that—however you
throw it—the baseball should approach the limiting velocity v = 200 ft/s instead
of accelerating indefinitely (as it would in the absence of any air resistance). The
handy fact that 60 mi/h = 88 ft/s yields

ft 60 mi/h mi
v = 200— X

88 ft/s
136.36

Perhaps a catcher accustomed to 100 mi/h fastballs would have some chance of
fielding this speeding ball.

Comment: If the ball’s initial velocity is v(0) 200, then Eq. (4) gives
v’(O) = 32 — (0.l6)(200) = 0, so the ball experiences no initial acceleration. Its
velocity therefore remains unchanged, and hence v(,’) 200 is a constant “equilib
rium solution” of the differential equation. If the initial velocity is greater than 200,
then the initial acceleration given by Eq. (4) is negative, so the ball slows down as it
falls. But if the initial velocity is less than 200, then the initial acceleration given by
(4) is positive, so the ball speeds up as it falls. It therefore seems quite reasonable
that, because of air resistance, the baseball will approach a limiting velocity of 200
ft/s—whatever initial velocity it starts with. You might like to verify that—in the
absence of air resistance—this ball would hit the ground at over 300 mi/h. I

Example 3

‘+ULJ

300

200

100

0 5 10 15 20 25

FIGURE 1.3.7. Slope field and
typical solution curves for

— 32—O.16v.

L
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of In Section 2.1 we will discuss in detail the logistic differential equation

are dP
taI

—

= 0.0004P(150 F) = 0.06P O.0004P2.
di’

FIGURE 1.3.8. Slope field and
typical solution curves for
F’ = 0.06P — 0.0004P2.

so the population experiences no initial (instantaneous) change. It therefore remains
unchanged, and hence PQ) 150 is a constant “equilibrium solution” of the dif
ferential equation. If the initial population is greater than 150, then the initial rate of
change given by (6) is negative, so the population immediately begins to decrease.
But if the initial population is less than 150, then the initial rate of change given by
(6) is positive, so the population immediately begins to increase. It therefore seems
quite reasonable to conclude that the population will approach a limiting value of
150—whatever the (positive) initial population.

Existence and Uniqueness of Solutions

Before one spends much time attempting to solve a given differential equation, it
is wise to know that solutions actually exist. We may also want to know whether

of there is only one solution of the equation satisfying a given initial condition—that
• is, whether its solutions are unique.

I
YF = —‘ y(O) = 0 (7)

has no solution, because no solution y(x) = f(l/x) dx = ln Ix + C of the differ
ential equation is defined at x = 0. We see this graphically in Fig. 1.3.9, which
shows a direction field and some typical solution curves for the equation y’ = 1/x.
It is apparent that the indicated direction field “forces” all solution curves near the
y-axis to plunge downward so that none can pass through the point (0, 0).

ion

sed
han

If
-na
vity
rd,

dP
—zkP(M—P) (5)
di’

that often is used to model a population PQ) that inhabits an environment with
carrying capacity M. This means that M is the maximum population that this envi
ronment can sustain on a long-term basis (in terms of the maximum available food,
for instance).

Example 4 If we take k = 0.0004 and M = 150, then the logistic equation in (5) takes the form

I
\ \

\ \ \ \
\ \ \ \ \ \ \ \ \
\\‘,\\‘_\\ \\

50 75 100

(6)

The positive term 0.06F on the right in (6) corresponds to natural growth at a 6%
annual rate (with time t measured in years). The negative term —0.0004P2repre
sents the inhibition of growth due to limited resources in the environment.

Figure 1.3.8 shows a slope field for Eq. (6), together with a number of solution
curves corresponding to possible different values of the initial population P (0).
Note that all these solution curves appear to approach the horizontal line P = 150
as an asymptote. This implies that—whatever the initial population—the population
P(t) approaches the limiting population P = 150 as t — cc.

Comment: If the initial population is P(0) 150, then Eq. (6) gives

P’(0) = 0.0004(150)(150 — 150) 0,
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Example 5 (a) [Failure of existence] The initial value problem

x
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FIGURE 1.3.10. Direction field and two
different solution curves for the initial value
problem y’ = v(O) = 0.

(b) [Failure of uniqueness] On the other hand, you can readily verify that the initial

value problem
y’ = 2J,y(0) 0 (8)

has the two different solutions y1(x) = x2 and y2(x) 0 (see Problem 27). Figure

1.3.10 shows a direction field and these two different solution curves for the initial

value problem in (8). We see that the curve y1(x) = x2 threads its way through the

indicated direction field, whereas the differential equation y’ = 2/ specifies slope

= 0 along the x-axis y2(x) = 0.

Example 5 illustrates the fact that, before we can speak of “the” solution of

an initial value problem, we need to know that it has one and only one solution.

Questions of existence and uniqueness of solutions also bear on the process of

mathematical modeling. Suppose that we are studying a physical system whose be

havior is completely determined by certain initial conditions, but that our proposed

mathematical model involves a differential equation not having a unique solution

satisfying those conditions. This raises an immediate question as to whether the

mathematical model adequately represents the physical system.

The theorem stated below implies that the initial value problem y’ f(x, y),

y(a) = b has one and only one solution defined near the point x = a on the x-axis,

provided that both the function f and its partial derivative 8f/v are continuous

near the point (a, b) in the xy-plane. Methods of proving existence and uniqueness

theorems are discussed in Appendix A.

y

v(x)

iI

____

THEOREM 1 Existence and Uniqueness of Solutions

Suppose that both the function f(x, y) and its partial derivative D.1f(x, v) are

continuous on some rectangle R in the xy-plane that contains the point (a, b)

in its interior. Then, for some open interval I containing the point a, the initial

value problem

= f(x, y). v(a) = b
dx

(9)

has one and only one solution that is defined on the interval I. (As illustrated in

Fig. 1 .3.11, the solution interval I may not be as “wide” as the original rectangle

R of continuity; see Remark 3 on the next page.)

7

1

\\ 1, /%
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/ / / / / / / /

/ / / / / / / / /
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/ / / / / / /
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/ / / 7/7 / / / /

___— v,(x) 0
(0, 0)

0

FIGURE 1.3.9. Direction field
and typical solution curves for
the equation V1 = 1/x.

I

a

FIGURE 1.3.11. The rectangle
R and x-interval 1 of Theorem 1,
and the solution curve y = y (x)
through the point (a, b).

I
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Remark 1: In the case of the differential equation dy/dx =
—

y of Exam
ple I and Fig. 1.3.2(c), both the function f(x, y) = —y and the partial derivative

= —1 are continuous everywhere, so Theorem 1 implies the existence of a
unique solution for any initial data (a, b). Although the theorem ensures existence
only on some open interval containing x = a, each solution v(x) = Ce_x actually
is defined for all x.

Remark 2: In the case of the differential equation dv/dx =
2/ of Ex

ample 5(b) and Eq. (8), the function f(x, y) = 2J is continuous wherever y > 0,
but the partial derivative sf/By = 1// is discontinuous when y = 0, and hence at
the point (0, 0). This is why it is possible for there to exist two different solutions
y (x) = x2 and V2(x) 0, each of which satisfies the initial condition v(0) = 0.

Remark 3: In Example 7 of Section 1.1 we examined the especially sim
ple differential equation dy/dx = y2. Here we have f(x, y) = y2 and f/y = 2y.
Both of these functions are continuous everywhere in the xy-plane, and in partic
ular on the rectangle —2 <x < 2, 0 < y < 2. Because the point (0, 1) lies in the
interior of this rectangle, Theorem I guarantees a unique solution—necessarily a
continuous function—of the initial value problem

d’,’ 2
— —y , y(0)= 1 (10)
dx

1
y(x) =

I —x

The following example shows that, if the function f(x, y) and/or its partial
derivative f/y fail to satisfy the continuity hypothesis of Theorem 1, then the
initial value problem in (9) may have either no solution or many—even infinitely
many—solutions.

x2=2y. (11)
dx

Applying Theorem 1 with f(x, y) = 2y/x and Bf/8y = 2/x, we conclude that
Eq. (11) must have a unique solution near any point in the xy-plane where x 0.
Indeed, we see immediately by substitution in (ii) that

y(x) = Cx2 (12)

satisfies Eq. (11) for any value of the constant C and for all values of the variable
x. In particular, the initial value problem

x-=2y, y(O)=O (13)
dx

4

2

0

—2
—4 —2 0 2

x

FIGURE 1.3.12. The solution
curve through the initial point
(0, 1) leaves the rectmgle R
before it reaches the right side
of R.

on some open x-interval containing a = 0. Indeed this is the solution
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(9)

ted in
angle

that we discussed in Example 7. But y(x) = 1/(l — x) is discontinuous at x = 1,
so our unique continuous solution does not exist on the entire interval —2 <x < 2.
Thus the solution interval I of Theorem I may not be as wide as the rectangle R
where f and af/By are continuous. Geometrically, the reason is that the solution
curve provided by the theorem may leave the rectangle—wherein solutions of the
differential equation are guaranteed to exist—before it reaches the one or both ends
of the interval (see Fig. 1.3.12). U

Example 6 Consider the first-order differential equation

I
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FIGURE 1.3.13. There are
infinitely many solution curves
through the point (0, 0), but no
solution curves through the point
(0, b) if b 0. dv

x—--=2y, y(a)=b
dx

has a unique solution on any interval that contains the point x = a but not the origin

x = 0. In summary. the initial value problem in (15) has

• a unique solution near (a, b) if a 0;

• no solution ifa = 0 butb 0;

• infinitely many solutions if a = b = 0.

For a particular value of C, the solution curve defined by (16) consists of the left

half of the parabola v x2 and the right half of the parabola y = Cx2. Thus the

unique solution curve near (—1, 1) branches at the origin into the infinitely many

solution curves illustrated in Fig. 1.3.14.

We therefore see that Theorem 1 (if its hypotheses are satisfied) guarantees

uniqueness of the solution near the initial point (a. b), but a solution curve through

(a, b) may eventually branch elsewhere so that uniqueness is lost. Thus a solution

may exist on a larger interval than one on which the solution is unique. For instance,

the solution y(x) = x2 of the initial value problem in (17) exists on the whole x

axis, but this solution is unique only on the negative x-axis —no <x < 0.

(0,b) (0,0)

- \ I I I il
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—2 —1

has infinitely many different solutions, whose solution curves are the parabolas y

Cx2 illustrated in Fig. 1.3.13. (In case C = 0, the “parabola” is actually the x-axis

y = 0.)
Observe that all these parabolas pass through the origin (0, 0). but none of

them passes through any other point on the v-axis. It follows that the initial value

problem in (13) has infinitely many solutions, but the initial value problem

x=2, y(O)=b (14)
dx

has no solution if b 0.
Finally, note that through any point off the y-axis there passes only one of the

parabolas y Cx2. Hence, if a 0, then the initial value problem

(15)

x

FIGURE 1.3.14. There are
infinitely many solution curves
through the point (1, —1).

Still more can be said about the initial value problem in (15). Consider a

typical initial point off the y-axis—for instance, the point (—1, 1) indicated in Fig.

1.3.14. Then for any value of the constant C the function defined by

x2 ifx<0,
y(x) 2

—
(16)

Cx ifx>0

is continuous and satisfies the initial value problem

x-=2y, v(—l)=l. (17)
dx
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FIGURE 1.3.16
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A more detailed version of Theorem I says that, if the func

tion f(x, y) is continuous ,iear the point (a, b), then at least

one solution of the differential equation y’ f (x, y) exists

on some open interval I containing the point x = a and,

moreove,; that if in addition the partial derivative 0f/8y is

continuous near (a, b), then this solution is unique on some

(perhaps smaller) interval J. In Problems 11 through 20, de

termine whether existence of at least one solution of the given

initial value problem is thereby guaranteed and, if so, whether

uniqueness of that solution is guaranteed.

11. = 2xy2; 3(1) = —1
dx

12. =x1nv; y(1)=l
dx -

16. y(2)=l
dx

17.y=x—1; y(O)=l
dx

18. y=x—1; y(1)=O

19. ln(1 + y2); y(O) = 0

20. - x2 — v2 y(O) = 1

In Problems 21 and 22, first use the method of Example 2

to construct a slope field for the given differential equation.

Then sketch the solution curve corresponding to the given ini

tial condition. Finally, use this solution curve to estimate the

desired value of the solution y(x).

21. y’ = x + y, y(O) 0; y(—4) =?

22. y’ = y — x, y(4) 0; y(—4) =?

I

7. =sinx+siny
dx

3 I I

-

10. —- = —x2 + siny
dx

—2

3

—1

FIGURE 1.3.21

28. —=x —y
dx
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clv
9. —=x—y—2

dx

13. %3/i; y(O)=l 14. =/5T:

15. =/r’; y(2)=2
dx

y(O) = 0
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ProblemS 23 and 24 are like Problems 21 and 22, but now
Use a computer algebra System to plot and print out a slope
field for the given differential equation. Ifyou wish (and know
how), you can check your man uallv sketched solution curve by
plotting it wit/i the computer.

23.Y’X2+Y—L y(O)=O; ‘(2)=?

24. y’ = x + y2, y(—2) = 0; y(2) =?

25. You bail out of the helicopter of Example 3 and pull the
ripord of your parachute. Now k = 1.6 in Eq. (3), so
your downward velocity satisfies the initial value problem

=32—1.6v, v(0)=0.

in order to investigate your chances of survival, construct
a slope field for this differential equation and sketch the
appropriate solution curve. What will your limiting veloc
ity be? Will a strategically located haystack do any good?
How long will it take you to reach 95% of your limiting
velocity?

26. Suppose the deer population P(t) in a small forest satis
fies the logistic equation

= 0.0225 P — 0.0003P2.

Construct a slope field and appropriate solution curve to
answer the following questions: If there are 25 deer at
time t = 0 and t is measured in months, how long will
it take the number of deer to double? What will be the
limiting deer population?

The next seven problems illustrate the fact that, if the hypothe
ses of Theorem 1 are not satisfied, then the initial value prob
leni v’ = f(x, y), y(a) = b may have either no solutions,
finitely many solutions, or infinitely many solutions.

27. (a) Verify that if c is a constant, then the function defined
piecewise by

lo forxc,
forx>c

satisfies the differential equation y’ 2/5 for all x (in
cluding the point x = c). Construct a figure illustrating the
fact that the initial value problem y’ 2/V, y (0) 0 has
infinitely many different solutions. (b) For what values of
b does the initial value problem’ = 2/5, y(O) = b have
(i) no solution, (ii) a unique solution that is defined for all

28. Verify that jfk is a constant, then the function y (x) kx
satisfies the differential equation xy’ = y for all x. Con
struct a slope field and several of these straight line so
lution curves. Then determine (in terms of a and b) how
many different solutions the initial value problem xy’ =
y(a) = b has—one, none, or infinitely many.

29. Verify that if c is a constant, then the function defined
piecewise by

0 forxc,
y(x) = —

(x—c)3 forx>c

satisfies the differential equation y’ = 3y2/3 for all x. Can
you also use the “left half” of the cubic y = (x — c)3 in
piecing together a solution curve of the differential equa
tion? (See Fig. 1.3.25.) Sketch a variety of such solution
curves. Is there a point (a, b) of the xv-plane such that
the initial value problem y’ = 3y213, v(a) = b has either
no solution or a unique solution that is defined for all x?
Reconcile your answer with Theorem 1.

30. Verify that if c is a constant, then the function defined
piecewise by

+1 ifxc,
y(x)= cos(x—c) ifc<x<c--jr,

—1 ifxc+7r

satisfies the differential equation y’ = —./l — y2 for all x.
(Perhaps a preliminary sketch with c = 0 will be helpful,)
Sketch a variety of such solution curves. Then determine
(in terms of a and b) how many different solutions the ini
tial value problem y’ = — y2, v(a) = b has.

31. Carry out an investigation similar to that in Problem 30.
except with the differential equation y’ = +/‘l — y2.
Does it suffice simply to replace cos(x —c) with sin(x —c)
in piecing together a solution that is defined for all x?

32. Verify that if c > 0, then the function defined piecewise
by

0 ifx2c,= —

(x2 —c)2 ifx2 > c

satisfies the differential equation y’ = 4x.f for all x.
Sketch a variety of such solution curves for different val
ues of c. Then determine (in terms of a and b) how many
different solutions the initial value problem v’ =

= b has.

dt
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FIGURE 1.3.25. A suggestion for Problem 29.
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33. If c 0, verify that the function defined by v(x) =

x/(cx — 1) (with graph illustrated in Fig. 1.3.26) satisfies

the differential equation x2y’ + v2 0 if x 1/c. Sketch

a variety of such solution curves for different values of

c. Also, note the constant-valued function y(x) 0 that

does not result from any choice of the constant c. Finally,

determine (in terms of a and b) how many different solu

tions the initial value problem x2y’ + y2 0, y(a) b

has.

FIGURE 1.3.26. Slope field for x2y’ + y2 = 0
and graph of a solution y(x) = x/(cx — 1).

34. (a) Use the direction field of Problem 5 to estimate the

values at x = 1 of the two solutions of the differ

ential equation y’ = — x + 1 with initial values

y(—l) = —1.2 and y(—l) = —0.8.

(b) Use a computer algebra system to estimate the val

ues at x = 3 of the two solutions of this differen

tial equation with initial values y(—3) = —3.01 and

—2.99.

The lesson of this problem is that small changes in initial

conditions can make big differences in results.

35. (a) Use the direction field of Problem 6 to estimate the

values at x = 2 of the two solutions of the differ

ential equation y’ = x
—

y ± I with initial values

y(—3) —0.2 and y(—3) = +0.2.

(b) Use a computer algebra system to estimate the val

ues at x = 2 of the two solutions of this differen

tial equation with initial values y(—3) = —0.5 and

y(—3) +0.5.

The lesson of this problem is that big changes in initial

conditions may make only small differences in results.

1.3 Application
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FIGURE 1.3.27. Slope field and solution curves for the differential

equation

= sin(x
— y)

dx

with initial points (0, b), b = —3, —1. —2, 0, 2, 4 and window

—5 x,y 5 on a Tl-89 graphing calculator.

The applications manual accompanying this textbook includes discussion of

MapleTM, MatheinaticaTM, and MATLABTM resources for the investigation of dif

ferential equations. For instance, the Maple command

with(DEtools):

DEplot(diff(y(x),x)sin(x-.y(x)), y(x), x=—5. .5, y=—5. .5);
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Computer-Generated Slope Fields and Solution Curves

Widely available computer algebra systems and technical computing environments

include facilities to automate the construction of slope fields and solution curves, as

do some graphing calculators (see Fig. 1.3.27).


