
Math 2250-1 
Wed Sept 5
2.1-2.2 Autonomous differential equations

Final intro to Maple sessions in LCB 115:
Wednesday 10:45-11:35 AM, 3:05-3:55 PM
Thursday 11:50 AM-12:40 PM

,   Yesterday we discussed the logistic model for population change, but didn't have time to start Monday's
notes on autonomous DE's.  Let's begin there today, and then continue with today's notes.

Exercise 1)  Use the chain rule to check that if x t  solves the autonomous DE
x# t = f x  

Then X t d x tK c   solves the same DE.  What does this say about the geometry of representative 
solution graphs to autonomous DEs?
graphs are translations of each other

Further application:  Doomsday-extinction.  With different hypotheses about fertility and morbidity, one 
can arrive at a population model which looks like logistic, except the right hand side is the opposite of what
it was in that case:

P# t = a P2 K b P 
For example, suppose that the chances of procreation are proportional to population density (think 
alligators), i.e. the fertility rate b = a P.  Suppose the morbidity rate is constant, d = b.  With these 
assumptions the birth and death rates are a P2 and Kb P .... which yields the DE above.  In this case factor 
the right side:

P# t = a P PK
b
a

= k P PKM .

Exercise 2a)  Construct the phase diagram for the general doomsday-extinction model and discuss the 
stability of the equilbrium solutions.

Exercise 2b)  If Q t  solves the logistic differential equation
Q# t = k Q MKQ  

show that P t d Q Kt  solves the doomsday-extinction differential equation
P# t = k P PKM  .

Use this to recover a formula for solutions to doomsday-extinction IVPs.  (In your homework you're 
asked to use partial fractions to get the general solution to doomsday-extinction.  In the current exercise we
take a shortcut.)  What does this say about how representative solution graphs are related, for the logistic 
and the doomsday-extinction models?



Exercise 3:  Solve the doomsday-extinction IVP
x# t = x xK 1
x 0 = 2 .

Does the solution exist for all tO 0 ?  (Hint: no, there is a very bad doomsday at t = ln 2.   



Further application:  harvesting a logistic population...text p.97  (or, why do fisheries sometimes seem to 
die out "suddenly"?)  Consider the DE

P# t = a PK b P2 K h .
Notice that the first two terms represent a logistic rate of change, but we are now harvesting the population 
at a rate of h units per time.  For simplicity we'll assume we're harvesting fish per year (or thousands of 
fish per year etc.)  One could model different situations, e.g. constant "effort" harvesting, in which the 
effect on how fast the population was changing could be h P instead of P .

For computational ease we will assume a = 2, b = 1 .  (One could actually change units of population and 
time to reduce to this case.)



This model gives a plausible explanation for why many fisheries have "unexpectedly" collapsed in modern
history.  If h! 1  but near 1 and something perturbs the system a little bit (a bad winter, or a slight 
increase in fishing pressure), then the population and/or model could suddenly shift so that P t /0 very 
quickly.

Here's one picture that summarizes all the cases - you can think of it as collection of the phase diagrams for
different fishing pressures h .  The upper half of the parabola represents the stable equilibria, and the lower
half represents the unstable equilibria.  Diagrams like this are called "bifurcation diagrams".  In the sketch 
below, the point on the h- axis should be labeled h = 1 , not h .  What's shown is the parabola of 
equilibrium solutions, c = 1G 1K h , i.e. 2 cK c2 K h = 0 , i.e. h = c 2K c  .


