Math 2250-1

Tues Sept 4

2.1-2.2 Autonomous differential equations

Final intro to Maple sessions in LCB 115:

Tuesday 2-2:50 PM

Wednesday 10:45-11:35 AM, 3:05-3:55 PM

Thursday 11:50 AM-12:40 PM

• Discuss the improved population models in section 2.1, in particular the logistic model. This will take a large part of today's presentation, and will use last Friday's notes.

Then begin

2.2: Autonomous Differential Equations.

Recall, that if we solve for the derivative, a general first order DE for x = x(t) is written as

$$x' = f(t, x)$$
,

which is shorthand for x'(t) = f(t, x(t)).

<u>Definition</u>: If the slope function f only depends on the value of x(t), and not on t itself, then we call the first order differential equation *autonomous*:

$$x'=f(x)$$
.

Example: The logistic DE, P' = k P(M - P) is an autonomous differential equation for P(t), for example.

<u>Definition</u>: Constant solutions $x(t) \equiv c$ to autonomous differential equations x' = f(x) are called *equilibrium solutions*. Since the derivative of a constant function $x(t) \equiv c$ is zero, the values c of equilibrium solutions are exactly the roots c to f(c) = 0.

Example: The functions $P(t) \equiv 0$ and $P(t) \equiv M$ are the equilibrium solutions for the logistic DE.

Exercise 1: Find the equilibrium solutions of

1a)
$$x'(t) = 3x - x^2$$

1b)
$$x'(t) = x^3 + 2x^2 + x$$

$$1c) x'(t) = \sin(x) .$$

<u>Def:</u> Let $x(t) \equiv c$ be an equilibrium solution for an autonomous DE. Then

- · c is a *stable* equilibrium solution if solutions with initial values close enough to c stay close to c. There is a precise way to say this, but it requires quantifiers: For every $\varepsilon > 0$ there exists a $\delta > 0$ so that for solutions with $|x(0) c| < \delta$, we have $|x(t) c| < \varepsilon$ for all t > 0.
 - \cdot c is an *unstable* equilibrium if it is not stable.
- c is an *asymptotically stable* equilibrium solution if it's stable and in addition, if x(0) is close enough to c, then $\lim_{t\to\infty}x(t)=c$, i.e. there exists a $\delta>0$ so that if $|x(0)-c|<\delta$ then

 $\lim_{t \to \infty} x(t) = c$. (Notice that this means the horizontal line x = c will be an *asymptote* to the solution graphs x = x(t) in these cases.)

Exercise 2: Use phase diagram analysis to guess the stability of the equilibrium solutions in Exercise 1. For (a) you've worked out a solution formula already, so you'll know you're right. For (b), (c), use the Theorem on the next page to justify your answers.

2a)
$$x'(t) = 3x - x^2$$

2b)
$$x'(t) = x^3 + 2x^2 + x$$

$$2c) x'(t) = \sin(x) .$$

Theorem: Consider the autonomous differential equation

$$x'(t) = f(x)$$

with f(x) and $\frac{\partial}{\partial x} f(x)$ continuous (so local existence and uniqueness theorems hold). Let f(c) = 0, i.e.

 $x(t) \equiv c$ is an equilibrium solution. Suppose c is an *isolated zero* of f, i.e. there is an open interval containing c so that c is the only zero of f in that interval. The the stability of the equilibrium solution c can is completely determined by the local phase diagrams:

$$\begin{array}{lll} sign(f): & ----0+++ & \Rightarrow & \leftarrow \leftarrow \leftarrow c \rightarrow \rightarrow \rightarrow \Rightarrow c \text{ is unstable} \\ sign(f): & +++0---- & \Rightarrow & \rightarrow \rightarrow c \leftarrow \leftarrow \leftarrow \Rightarrow c \text{ is asymptotically stable} \\ sign(f): & +++0+++ & \Rightarrow & \rightarrow \rightarrow c \rightarrow \rightarrow \rightarrow c \Rightarrow c \text{ is unstable (half stable)} \\ sign(f): & ---0---- & \Rightarrow & \leftarrow \leftarrow \leftarrow c \leftarrow \leftarrow \leftarrow \Rightarrow c \text{ is unstable (half stable)} \end{array}$$

You can actually prove this Theorem with calculus!! (want to try?)

Here's why!