
Math 2250-1 
Wed Sept 12

,  Matlab introduction sessions in LCB 115 (In case you prefer Matlab to Maple for project 2).
W (today) 2-2:50  PM
F  11:50 AM-12:40 PM
probably one or two more on H or F, TBA.
..............................................................................

Before beginning Chapter 3, we have some phase-diagram material from 2.2 to discuss.  Because it's from 
several lectures back, I've recopied it into today's notes.

,     Discuss why we know that phase diagrams accurately predict behavior for solutions to autonomous 
differential equations.  This was from last Tuesday September 4:

Theorem: Consider the autonomous differential equation
x# t = f x  

with f x  and 
v

v x
 f x  continuous (so local existence and uniqueness theorems hold).  Let f c = 0 , i.e. 

x t h c is an equilibrium solution.  Suppose c is an isolated zero of f, i.e. there is an open interval 
containing c so that c is the only zero of f in that interval.  The the stability of the equilibrium solution c can
is completely determined by the local phase diagrams:
   

sign f :  KKKK0CCC       0      )))c///  0   c is unstable               
   sign f :  CCC 0KKKK    0    ///c)))  0   c is asymptotically stable

  sign f :    CCC 0CCC     0     ///c///  0   c is unstable (half stable)
          sign f :KKKK0KKKK      0   )))c)))   0   c is unstable (half stable)      

Here's why.  Let x t  be a solution to an IVP, with x0 in one of the intervals above.

Thus for initial values x0 s c in this subinterval we have  lim
t /N

x t = c as well as x t s c for any finite 
t-value, since if x t1 = c then the uniqueness theorem says x t h c .  The other cases are analogous.



,  Discuss the logistic equation with constant rate harvesting model, from Wednesday September 5 and 
also the text p. 97:
(or, why do fisheries sometimes seem to die out "suddenly"?)  Consider the DE

P# t = a PK b P2 K h .
Notice that the first two terms represent a logistic rate of change, but we are now harvesting the population 
at a rate of h units per time.  For simplicity we'll assume we're harvesting fish per year (or thousands of 
fish per year etc.)  One could model different situations, e.g. constant "effort" harvesting, in which the 
effect on how fast the population was changing could be h P instead of P ...This comes up in your 
postponed homework problem from last week.

For computational ease we will assume a = 2, b = 1 .  (One could actually change units of population and 
time to reduce to this case.)



This model gives a plausible explanation for why many fisheries have "unexpectedly" collapsed in modern
history.  If h ! 1  but near 1 and something perturbs the system a little bit (a bad winter, or a slight 
increase in fishing pressure), then the population and/or model could suddenly shift so that P t /0 very 
quickly.

Here's one picture that summarizes all the cases - you can think of it as collection of the phase diagrams for
different fishing pressures h .  The upper half of the parabola represents the stable equilibria, and the lower
half represents the unstable equilibria.  Diagrams like this are called "bifurcation diagrams".  In the sketch 
below, the point on the h- axis should be labeled h = 1 , not h .  What's shown is the parabola of 
equilibrium solutions, c = 1G 1K h , i.e. 2 cK c2 K h = 0 , i.e. h = c 2K c  .



3.1-3.2  Linear systems of (algebraic) equations and how to solve them

We're going to temporarily leave differential equations in order to study basic concepts in linear algebra.  
You've all studied linear systems of equations and matrices before, and that's where we'll start. Linear 
algebra is foundational for many different disciplines, and in this course we'll use the key ideas when we 
return to higher order linear differential equations and to systems of differential equations.  As it turns out, 
there's an example of solving simultaneous linear equations in this week's homework. It's related to 
Simpson's rule for numerical integration, which is itself related to the Runge-Kutta algorithm for finding 
numerical solutions to differential equations.

Exercise 1:  Set up a system of three linear algebraic equations for the coefficients a, b, c of a quadratic 
function p x = a x2 C b xC c so that for some fixed h O 0 the graph y = p x  goes through the three 
points

Kh, y0 , 0, y1 , h, y2
(See example of what you're trying to do, below....this problem relates to Simpson's rule for numerical 
integration, see discussion in hw.)

For example, the graph of p x =Kx2 C xC 2  interpolates the three points K1, 0 , 0, 2 , 1, 2 : 

x
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quadratic fit to three points 
(-1,0),(0,2),(1,2)



In 3.1-3.2 our goal is to understand systematic ways to solve simultaneous linear equations.  Although we 
used a, b, c for the unknowns in the previous problem, this is not our standard way of labeling.
,   We'll often call the unknowns x1, x2,... xn, or write them as elements in a vector 

x = x1, x2, ... xn .  
,   Then the general linear system (LS) of m equations in the n unknowns can written as

a11 x1 C a12 x2 C... C a1 n xn = b1 
a21 x1 C a22 x2 C... C a2 n xn = b2

  :                                      :      :
am1 x1 C am2 x2 C... C am n xn = bm

where the coefficients ai j and the right-side number bj are known.  The goal is to find values for the vector
x so that all equations are true.  (Thus this is often called finding "simultaneous" solutions to the linear 
system, because all equations will be true at once.)

Notice that we use two subscripts for the coefficients ai j and that the first one indicates which equation it 
appears in, and the second one indicates which variable its multiplying;  in the corresponding coefficient 
matrix A , this numbering corresponds to the row and column of ai j:

A d

 a11   a12   a13   ...    a1 n

 a21   a22   a23   ...   a2 n 

:                               :

am1   am2   am3  ...   am n

Let's start small, where geometric reasoning will help us understand what's going on:
Exercise 2:  Describe the solution set of each single equation below; describe and sketch its geometric 
realization in the indicated Euclidean spaces.
2a)  3 x = 5 ,  for  x 2 = .
2b)  2 xC 3 y = 6,  for  x, y 2 =2.
2c)  2 xC 3 yC 4 z = 12,  for x, y, z 2 =3 .



2 linear equations in 2 unknowns:
a11 xC a12 y = b1 
a21 xC a22 y = b2 

goal:  find all x, y  making both of these equations true.  So geometrically you can interpret this problem 
as looking for the intersection of two lines.

Exercise 3: Consider the system of two equations E1, E2:
E1          5 xC 3 y = 1 
E2            x K 2 y = 8   

3a)  Sketch the solution set in =2, as the point of intersection between two lines.
3b)  Use the following three "elementary equation operations" to systematically reduce the system E1, E2 
to an equivalent system (i.e. one that has the same solution set), but of the form

1 xC 0 y = c1 
0 xC 1 y = c2 

(so that the solution is x = c1, y = c2).  Make sketches of the intersecting lines, at each stage.

The three types of elementary equation operation are below.  Can you explain why the solution set to the 
modified system is the same as the solution set before you make the modification?
,    interchange the order of the equations
,    multiply one of the equations by a non-zero constant
,    replace an equation with its sum with a multiple of a different equation.



3c)  Look at your work in 3b.  Notice that you could have save a lot of writing by doing this computation 
"synthetically", i.e. by just keeping track of the coefficients and right-side values.  Using R1, R2 as 
symbols for the rows, your work might look like the computation below.  Notice that when you operate 
synthetically the "elementary equation operations" correspond to "elementary row operations":
,    interchange two rows
,    multiply a row by a non-zero number
,    replace a row by its sum with a multiple of another row.

3d)  What are the possible geometric  solutions sets to 1, 2, 3, 4 or any number of linear equations in two 
unknowns?



Solutions to linear equations in 3 unknowns:

What is the geometric question you're answering?

Exercise 4)  Consider the system 
xC 2 yC z = 4 

3 xC 8 yC 7 z = 20
2 xC 7 yC 9 z = 23 .

Use elementary equation operations (or if you prefer, elementary row operations in the synthetic version) 
to find the solution set to this system.  There's a systematic way to do this, which we'll talk about.  It's 
called Gaussian elimination.
Hint: The solution set is a single point, x, y, z = 5,K2, 3 .



Exercise 5  There are other possibilities.  In the two systems below we kept all of the coeffients the same 
as in Exercise 4, except for a33 , and we changed the right side in the third equation, for 5a.  Work out 
what happens in each case.  

5a)
xC 2 yC z = 4 

3 xC 8 yC 7 z = 20
2 xC 7 yC 8 z = 20 .

5b)
xC 2 yC z = 4 

3 xC 8 yC 7 z = 20
2 xC 7 yC 8 z = 23 .

5c)  What are the possible solution sets (and geometric configurations) for 1, 2, 3, 4,... equations in 3 
unknowns?


