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4.4  Basis and dimension, and studying subspaces.

There are two ways that you have encountered subspaces:
1)  As the span of a collection of vectors (Theorem 1 discussed in detail on Wednesday).  This is an
explicit way to describe the subspace, because you are "listing" all of the vectors in it.

2)  As the solution space to a homogenous matrix equation (discussed by Kyle in the problem session 
yesterday).  This is an implicit way to describe the subspace because you're only saying the matrix 
equation that the vectors must satisfy, but you're not saying what the vectors are.

Here's what Kyle discussed:

Theorem 2:  Let Am# n be a matrix. Consider the solution space W of all solutions to the homogeneous 
matrix equation

A x = 0  ,
i.e.

W = x 2 =n s.t. Am# n x = 0  .
Then W 4 =n is a subspace. Furthermore, you can find a basis for this subspace by backsolving from the 
reduced row echelon form of A:  once you write the solution in linear combination form

x = c1v1 C c2 v2 C  ...C ck vk 
the vectors v1, v2,  ... vk will always be linearly independent.  Thus, since these vectors span W by 
construction, v1, v2,  ... vk are a basis for W.

Exercise 1)  Check that a , b  hold for the solution space W to A x = 0  , i.e to verify that
W = x 2 =n s.t. Am# n x = 0  

is indeed a subspace.

Verification:
a)  Let x 2 W, y 2 W.  We need to show that xC y 2 W .  In other words, is A xC y = 0?  
Because x 2 W, y 2 W we know A x = 0, A y = 0 .  Thus

A xC y = A xCA y = 0C 0 = 0 .
b)  Let x 2 W, c 2 =.  We need to show c x 2 W .  In other words, is A c x = 0?  But

A c x = c A x = c 0 = 0 .
Thus W is a subspace.

Then Kyle went through the algorithm to find an explicit way to represent the solution space, which we 
actually already know from Chapter 3....see the next page.



Consider the matrix equation A x = 0 , with the matrix A (and its reduced row echelon form) shown below:

A :=

1 2 0 1 1 2
2 4 1 4 1 7

K1 K2 1 1 K2 1
K2 K4 0 K2 K2 K4

     /     

1 2 0 1 1 2
0 0 1 2 K1 3
0 0 0 0 0 0
0 0 0 0 0 0

  

Exercise 2a)  Find a basis for the solution space  W = x 2 =6 s.t. A x = 0   by backsolving, writing your 
explicit solutions in linear combination form, and extracting a basis.  Explain why these vectors span the 
solution space and verify that they're linearly independent.

Solution:  backsolve, realizing that the augmented matrices have final columns of zero.  Label the free 
variables with the letter "t", and subscripts to show the non-leading 1 columns from which they arose:

x6 = t6, x5 = t5, x4 = t4, x3 =K2 t4 C t5 K 3 t6 
x2 = t2, x1 =K2 t2 K t4 K t5 K 2 t6 .

In vector form and then linear combination form this is:
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Thus the four vectors
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are a basis for the solution space:
,   They span the solution space by construction.  
,  They are linearly independent because if we set a linear combination equal to zero:
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then looking in the second entry implies t2 = 0,  the fourth entry implies t4 = 0, and similarly t5 = t6 = 0 .



2b)   What is the dimension of W ?  How is the dimension related to the shape of the reduced row echelon 
form of A?
Because there are four vectors in a basis for this solution space, the dimension of the solution space is the
number 4.  Notice that this number is the number of free parameters, which is the number of columns of 
the reduced row echelon form that do not have leading ones.

In Exercise 2, we began by describing the subspace W implicitly, and then found a basis with which to 
express W explicitly as the span of that collection of basis vectors.  

It's interesting that the same matrix Am# n can occur for two different subspace problems, and this 
happened in your homework.  That can be confusing.

(1)  It could be you're trying to find a basis for the span of a collection of n vectors in =m.  You make these
columns these vectors are the columns of a matrix Am# n , compute the reduced row echelon form, and 
read off column dependencies in the original matrix.  Then use these dependencies to delete dependent 
vectors from your collection until you're left with a basis for the span of the original collection.

(2)  It could be you're trying to find a basis for the solution space in =n to Am# n x = 0 , by reducing A and 
backsolving, as we just illustrated in Exercise 2.

We can illstrate (1) with the matrix we just used for (2):

Exercise 3a)  Consider the six vectors in =4 that were the columns of the previous matrix A.  Now find a 
basis for the subspace W spanned of these six vectors.  Here's the same computation we used before:

A :=

1 2 0 1 1 2
2 4 1 4 1 7

K1 K2 1 1 K2 1
K2 K4 0 K2 K2 K4

     /     

1 2 0 1 1 2
0 0 1 2 K1 3
0 0 0 0 0 0
0 0 0 0 0 0

.

3b)  What is the dimension of this subspace of =4?



Exercise 4)   There's a connection between the basis of the subspace of =6 in  Exercise 2 and how we 
found the dependencies in Exercise 3, for the column vectors in =4.  The connection is that, as we've talked
about before, homogeneous solutions c to A c = 0 correspond to column dependencies for A .  Check this 
correspondence, by looking once more at the basis vectors for the solution space to A c = 0 that you found 
in Exercise 2 and the column dependencies you found in 3a.  Here were the Exercise 2 basis vectors and 
the reduced row echelon form computation (once again):
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A :=

1 2 0 1 1 2
2 4 1 4 1 7

K1 K2 1 1 K2 1
K2 K4 0 K2 K2 K4

     /     

1 2 0 1 1 2
0 0 1 2 K1 3
0 0 0 0 0 0
0 0 0 0 0 0

.

Remark)  Why each matrix only has one possible Reduced Row Echelon Form:  The four conditions for 
rref (zero rows at bottom, non-zero rows start with leading ones, leading ones in successive rows move to 
the right, all column entries in any column containing a leading "1" are zero except for that "1"), together 
with specified column dependencies as above uniquely determine the rref matrix!  You can see this with 
the matrix A above.



Some important facts about spanning sets, independence, bases and dimension follow from one key fact, 
and then logic:

key fact:  If n vectors v1, v2, ... vn span a subspace W then any collection w1, w2, ... wN of vectors in W  
with N O n will always be linearly dependent.  (This is explained on pages 254-255 of the text.  Notice 
that it fits our intuition based on what we know in the special case that W = =n.)

Thus:
1)  If a finite collection of vectors in W is linearly independent, then no collection with fewer vectors can 
span all of W .  (This is because if the smaller collection did span, the larger collection wouldn't have been 
linearly independent after all, by the key fact.)

2)  Every basis of W has the same number of vectors, so the concept of dimension is well-defined and 
doesn't depend on choice of basis.  (This is because if v1, v2, ... vn are a basis for W then every larger 
collection of vectors is dependent by the key fact and every smaller collection fails to span by (1), so only 
collections with exactly n vectors have a chance to be bases.)

3)  If the dimension of W is the number n, and if w1, w2, ... wn span W then they're automatically linearly 
independent and thus a basis.  (If they were dependent we could delete at least one of them and still have a 
spanning set, which would violate (1).)

4)  If the dimension of W is the number n, and if w1, w2, ... wn are in W and are linearly independent, then 
they automatically span W and thus are a basis.  (If they didn't span W we could augment with a vector 
wn C 1 not in their span and have a collection of nC 1 still independent* vectors in W, violating the key 
fact. )

*  Check: If w1, w2, ... wn are linearly independent, and wn C 1 ; span w1, w2, ... wn , then 
w1, w2, ... wn, wn C 1 are also linearly independent:  Let 

c1w1 C c2w2 C ... C cnwn C d wn C 1 = 0 .
Since w ; span w1, w2, ... wn  it must be that d = 0 (since otherwise we could solve for wn C 1 as a 
linear combination of  w1, w2, ... wn).  But once d = 0 , we have

c1w1 C c2w2 C ... C cnwn = 0
which implies c1 = c2 =...= cn = 0 by the independence of w1, w2, ... wn .


