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5.6, EP3.7:  Discuss Tuesday's notes on damped forced oscillations, including practical resonance (which 
we'll exhibit with an RLC circuit having adjustable L, forced with standard 120 V, 60 Hz AC current from 
a wall outlet).  There is also a youtube link in those notes, to a related M.I.T. demonstration.

Then discuss KE+PE modeling (conservation of energy) to deduce natural (resonant) frequencies, see 
below.

If you're an engineer concerned about resonance or practical resonance, you need to know how to deduce 
the natural frequencies of undamped mechanical (or electrical) systems. Usually the best way is to use 
conservation of energy, which is an integrated and more generally applicable version of Newton's second 
law for mechanical systems.  Conservation of energy for undamped electrical circuits is Kirchoff's law.

Here are some examples, some old some new:

,     We've carefully discussed the (linearized) pendulum model, which leads to w0 =
g
L

 :



,    We used Newton's second law (and linearization) for the (e.g. hanging) mass-spring configuration

Exercise 1)  Use the fact that work done by an object is converted into potential energy (in a conservative 
system), to find the total energy of the undamped mass-spring system, and use this TE to re-derive the 
equations of motion and natural angular frequency, in analogy to how we worked the pendulum example.



Exercise 2)  Multicomponent systems are best understood using conservation of energy, when Newton's 
law may not apply in any obvious way.   For example, consider the following "rolling mass" configuration
(the spring constant of the massless spring is not shown, but as usual we call it k.)

Find the natural angular frequency for the configuration above.  Use the fact that the KE of the rotating 
disk is given by

KED =
1
2
I w

2
 ,

where w is the angular frequency of the rotation and I is the moment of inertia, which for a uniform disk of

mass m and radius a is given by I =
1
2
ma2 .  (Directly computing the KE of the rotating disk is an integral

computation, except in this case it's a double integral unlike the the spring example we just completed.  The
computation is relatively straightforward using polar coordinates, and you might even have done it in your 
multivariable calculus class when you discussed moments of intertia....in general, moments of intertia are 
used to compute rotational kinetic energy about centers of mass, and moments are used to compute angular
momentum, as well as centers of mass....this is why Calculus classes have units about these topics.)

(The answer is w0 =
2
3

k
m

z .82
k
m

, which is slower than if the mass wasn't rolling.  Could 

you have worked this problem if the spring actually had mass, so that its motion also contributed kinetic 
energy to the total system?)


