Math 2250-1

Tues Oct 2

4.1 - 4.3 Concepts related to linear combinations of vectors.

Exercise 1) Vocabulary review:

A <u>linear combination</u> of the vectors $\underline{v}_1, \underline{v}_2, \dots \underline{v}_n$ is

The <u>span</u> of \underline{v}_1 , \underline{v}_2 , ... \underline{v}_n is

The vectors $\underline{\mathbf{v}}_1, \underline{\mathbf{v}}_2, \dots \underline{\mathbf{v}}_n$ are <u>linearly independent</u> iff

The vectors $\underline{\mathbf{v}}_1, \underline{\mathbf{v}}_2, \dots \underline{\mathbf{v}}_n$ are <u>linearly dependent</u> iff

The vectors \underline{v}_1 , \underline{v}_2 , ... \underline{v}_n are called a <u>basis</u> for the space they span iff

• Keep recalling that for vectors in \mathbb{R}^m all linear combination questions can be reduced to matrix questions because any linear combination like the one on the left is actually just the matrix product on the right:

$$c_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{mI} \end{bmatrix} + c_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \dots + c_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ 0 \\ a_{mn} \end{bmatrix} = \begin{bmatrix} c_1 a_{11} + c_2 a_{12} + \dots \\ c_1 a_{21} + c_2 a_{22} + \dots \\ \vdots \\ c_1 a_{mI} + c_2 a_{m2} + \dots \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{mI} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$

• Now finish Exercises 5,6,7 from Monday's notes.

New vocabulary for today:

Definition: A <u>vector space</u> V is a collection of objects (called "vectors"), together with two operations: addition "+" and scalar multiplication " \cdot " so that the following axioms hold:

- (a) Whenever $f, g \in V$ then $f + g \in V$. (closure with respect to addition)
- (β) Whenever $f \in V$ and $c \in \mathbb{R}$, then $c \cdot f \in V$. (closure with respect to scalar

multiplication)

As well as:

- (a) f + g = g + f (commutative property)
- (b) f + (g + h) = (f + g) + h (associative property)
- (c) $\exists \ 0 \in V$ so that f + 0 = f is always true. (additive identity)
- (d) $\forall f \in V \exists -f \in V \text{ so that } f + (-f) = 0 \text{ (additive inverses)}$
- (e) $c \cdot (f+g) = c \cdot f + c \cdot g$ (scalar multiplication distributes over vector addition)
- (f) $(c_1 + c_2) \cdot f = c_1 \cdot f + c_2 \cdot f$ (scalar addition distributes over scalar multiplication)
- (g) $c_1 \cdot (c_2 \cdot f) = (c_1 c_2) \cdot f$ (associative property)
- (h) $1 \cdot f = f$, $(-1) \cdot f = -f$, $0 \cdot f = 0$ (these last two actually follow from the others).

<u>Remark:</u> If you look at those properties, they are exactly the ones we've been using in order to rewrite and simplify linear combinations of vectors in \mathbb{R}^m . If you look at them again, you'll see that they also hold for the addition and scalar multiplication of functions.

<u>Definition:</u> A <u>subspace</u> W of a vector space V is a (special) subset of V. In order to be called a <u>subspace</u>, this subset must be closed under addition and scalar multiplication, i.e. properties α , β above hold. As a result, W is itself a vector space, because it follows from α , β and the fact that W is a part of V that properties (a)-(h) also hold for all elements of W and all scalars in \mathbb{R} .

Exercise 2) The span of any collection of vectors \underline{v}_1 , \underline{v}_2 , ... \underline{v}_n in \mathbb{R}^m (or actually the span of any $f_1, f_2, ... f_n$ in some vector space V) is closed under addition and scalar multiplication, and so is a subspace of \mathbb{R}^m (or V). Show this.

Exercise 3) Expressing a subspace as the span of a collection of vectors (as in Exercise 2) is an <u>explicit</u> way to specify all of the elements of the subspace. Another way that subspaces often get expressed is <u>implicitly</u> as the solution set to a homogeneous linear system of equations: Show that if $A_{m \times n}$ is a matrix, then the solution set to

$$A \mathbf{x} = \mathbf{0}$$

is necessarily a <u>subspace</u> of \mathbb{R}^n . In other words, show that if you add any two solution vectors, you get a solution vector (α), and if you scalar multiply any solution vector, you get a solution vector (β).

<u>Exercise 4</u>) In the Monday <u>Exercises 5-7</u>, we were considering what we now realize from the general principles of <u>Exercise 2</u> is a subspace, namely

$$W = span\left\{ \begin{bmatrix} 2\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\-5 \end{bmatrix}, \begin{bmatrix} 4\\-1\\11 \end{bmatrix}, \begin{bmatrix} 6\\3\\3 \end{bmatrix} \right\} = span\left\{ \begin{bmatrix} 2\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\-5 \end{bmatrix} \right\}.$$

- <u>4a)</u> We also expressed W as the solution set to a very small linear homogeneous system of equations, as described in <u>Exercise 3</u>. How?
- $\underline{4b}$) If this plane W had been given to us implicitly as the solution set to the equation in your answer to $\underline{4a}$), how could we have found a basis for the plane directly from that equation? (Hint: backsolve, and write your explicit solutions in vector form.)

Exercise 5) Most subsets of a vector space V are actually not subspaces. Show that

$$\underline{5a} \quad W = \left\{ \left[x, y \right]^T \in \mathbb{R}^2 \text{ s.t. } x^2 + y^2 = 1 \right\} \text{ is } \underline{\text{not}} \text{ a subspace of } \mathbb{R}^2.$$

5b)
$$W = \{ [x, y]^T \in \mathbb{R}^2 \text{ s.t. } y = 3 x + 1 \} \text{ is } \underline{\text{not}} \text{ a subspace of } \mathbb{R}^2 .$$

<u>5c)</u> $W = \{ [x, y]^T \in \mathbb{R}^2 \text{ s.t. } y = 3 \text{ x} \} \text{ is a subspace of } \mathbb{R}^2 \text{ . Then find a basis for this subspace.}$

Exercise 6) Can you use matrix theory to show that the only subspaces of \mathbb{R}^2 are

- (0) The single vector $[0, 0]^T$, or (1) A line through the origin, i.e. $span\{\underline{\boldsymbol{u}}\}$ for some non-zero vector $\underline{\boldsymbol{u}}$, or
- (2) All of \mathbb{R}^2 .

Exercise 7) Can you use matrix theory to show that the only subspaces of \mathbb{R}^3 are

- (0) The single vector $[0, 0, 0]^T$, or
- (1) A line through the origin, i.e. $span\{\underline{u}\}$ for some non-zero vector \underline{u} , or
- (2) A plane through the origin, i.e. $span\{\underline{u}, \underline{v}\}$ where $\underline{u}, \underline{v}$ are linearly independent, or
- (3) All of \mathbb{R}^3 .

Exercise 8) The number of vectors in a basis for a subspace is called the <u>dimension</u> of the subspace. What are the dimensions of the subspaces in Exercise 6 and Exercise 7?