
Math 2250-1
Tues Nov 27
7.4  Mass-spring systems.  

,     Yesterday we considered conservative coupled mass spring systems with n masses, and discussed 
how to find bases for the 2n-dimensional solution spaces to the resulting system of n second order linear 
homogeneous differential equations

M x## t = K x   0     x## t = A x .
We focused on the case of 2 masses and three springs, 

although in your homework you'll also consider configurations like these:

In the example case from yesterday where all three Hooke's constants are the same, and the two mass 
values are the same, we found a basis for the 4-dimensional solution space, where each basis function was 
either cos wj t vj or sin wj t vj , where the (two) vj's were eigenvectors of A , with negative eigenvalues 

lj =Kwj
2
     ( wj = Kl  ).

Exercise 1)  Return to yesterday's notes, where we had just written down the solution at the top of page 4.  
Then complete exercise 3 there, verifying that you can solve each initial value problem for this second 
order system with a unique choice of the linear combination coefficients c1, c2, c3, c4 .  
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The two mass, three spring system....Experiment!  
Data:  Each mass is 50 grams.  Each spring mass is 10 grams.  (Remember, and this is a defect, our model 
assumes massless springs.)  The springs are "identical", and a mass of 50 grams stretches the spring 15.6 
centimeters.  (We should recheck this since it's last fall's data; we should also test the spring's 
"Hookesiness").  With the old numbers we get Hooke's constant

Digits d 4 :
solve k$.156 = .05$9.806, k

3.143

Here's Maple confirmation for some of our work yesterday:
with LinearAlgebra :
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Predict the two natural periods from the model and our experimental value of k, m.  Then make the system 
vibrate in each mode individually and compare your prediction to the actual periods of these two 
fundamental modes.
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ANSWER:  If you do the model correctly and my office data is close to our class data, you will come up 
with theoretical natural periods of  close to .46 and .79 seconds.  I predict that the actual natural periods are
a little longer, especially for the slow mode.  (In my office experiment I got periods of 0.482 and 0.855 
seconds.) What happened?

EXPLANATION:  The springs actually have mass, equal to 10 grams each.  This is almost on the same 
order of magnitude as the yellow masses, and causes the actual experiment to run more slowly than our 
model predicts.  In order to be more accurate the total energy of our model  must account for the kinetic 
energy of the springs.  You actually have the tools to model this more-complicated situation, using the 
ideas of total energy discussed in section 5.6, and a "little" Calculus.  You can carry out this analysis, like I
sketched for the single mass, single spring oscillator http://www.math.utah.
edu/~korevaar/2250fall12/oct24.pdf, assuming that the spring velocity at a point on the  spring linearly 
interpolates the velocity of the wall and mass (or mass and mass) which bounds it.  It turns out that this 
gives an A-matrix the same eigenvectors, but different eigenvalues, namely

l1 = K
6 k

6 m C 5 ms

l2 = K
6 k

2 m Cms
.

(Hints: the "M" matrix is not diagonal but the "K" matrix is the same.)

If you use these values, then you get period predictions 
md .05;
 ms d .010;
 kd 3.143;

 Omega1 d
6$k

6$mC 5$ms ;

 Omega2 d
6$k

2$mC ms ;

T1 d evalf
2$Pi

Omega1 ;

 T2 d evalf
2$Pi

Omega2 ;

m := 0.05
ms := 0.010
k := 3.143

W1 := 7.340

W2 := 13.09
T1 := 0.8559
T2 := 0.4801

of  .856 and .480 seconds per cycle.  Is that closer?
Challenge:  If you can construct (and explain to me in my office) a correct derivation of the  
eigenvalues /eigenvectors I claim above, by a conservation of energy argument that takes the 
spring masses and kinetic energy into account, then you can replace your lowest homework score 
this term with "20".  Due date: Next Friday December 7, 5:00 p.m.



Exercise 2)  Consider a train with two cars connected by a spring:

2a)  Derive the linear system of DEs that governs the dynamics of this configuration (it's actually a special 
case of what we did before, with two of the spring constants equal to zero)
2b).  Find the eigenvalues and eigenvectors.  Then find the general solution.  For l = 0 and its 
corresponding eigenvector v verify that you get two solutions

x t = v  and x t = t v ,
rather than the expected cos w t v,  sin w t v .  Interpret these solutions in terms of train motions.  You 
will use these ideas in some of your homework problems.



Forced oscillations  (still undamped):
M x## t = K x CF t   

0 x## t = A xC MK1F t  .
If the forcing is sinusoidal, 

M x## t = K x C cos w t G0

0   x## t = A x C cos w t F0  

with F0 = MK1G0 .

From the fundamental theorem for linear transformations we know that the general solution to this 
inhomogeneous linear problem is of the form

x t = xP t C xH t  ,
and we've just discussed how to find the homogeneous solutions xH t  .

As long as the driving frequency w is NOT one of the natural frequencies, we don't expect resonance;  the 
method of undetermined coefficients predicts there should be a particular solution of the form

xP t = cos w t  c 
where the vector c is what we need to find.

Exercise 3)  Substitute the guess xP t = cos w t  c into the DE system

 x## t = A x C cos w t F0

to find a matrix algebra formula for c = c w .  Notice that this formula makes sense precisely when w is 
NOT one of the natural frequencies of the system.

Solution:                

c w =K ACw
2
I

K1
F0 .

Note, matrix inverse exists precisely if Kw
2
 is not an eigenvalue.



Exercise 4)  Continuing with the example from Monday and today, and taking the case k = m , consider the
special case of the previous page's discussion.  Here we are forcing the second mass sinusoidally:

x
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x
1

x
2

C cos w t
0
3

We know from previous work that the natural frequencies are w1 = 1, w2 = 3  and that

xH t = C1cos tKa1

1

1
CC2cos 3 tKa2

1

K1
 .  

Find the formula for xP t  , as on the preceding page.  Notice that this steady periodic solution blows up 

as w/1 or w/ 3  .

Solution:  As long as ws 1, 3 , the general solution x = xPC xH is given by
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Interpretation as far as inferred practical resonance for slightly damped problems:  If there was even a 
small amount of damping, the homogeneous solution would actually be transient (it would be 
exponentially decaying and oscillating - underdamped).  There would still be a sinusoidal particular 
solution, which would have a formula close to our particular solution, the first term above, as long as 
ws 1, 3  . (There would also be a relatively smaller sin w t d term as well.)  So we can infer the 
practical resonance behavior for different w values with slight damping, by looking at the size of the c w  
term for the undamped problem....see next page for visualizations.



> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(4)(4)

restart :
with LinearAlgebra :
A dMatrix 2, 2, K2, 1, 1,K2 :
F0 d Vector 0, 3 :
Iden d IdentityMatrix 2 :

cdw/ A Cw2
$Iden

K1
. KF0 :  # the formula we worked out by hand

c w ;
3

3 K 4 w2
Cw4

K
3 K2 Cw2

3 K 4 w2
Cw4

with plots :
 with LinearAlgebra :
plot Norm c w , 2 , w = 0 ..4, magnitude = 0 ..10, color = black, title = `practical resonance` ;  

# Norm(c(w),2) is the magnitude of the c(w) vector
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plot Norm c
2$Pi

T , 2 , T = 0 ..15, magnitude = 0 ..15, color = black, title

= `practical resonance as function of forcing period` ;
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There are strong connections between our discussion here and the modeling of how earthquakes can shake
buildings:

As it turns out, for our physics lab springs, the modes and frequencies are almost identical:

http://www.youtube.com/watch?v=M_x2jOKAhZM  (an engineering class demo shake table)


