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First, Finish section 7.3 material, by considering the non-homogeneous first order system arising from the 
input-output model in Wednesday's notes - this was Exercise 5.  Then proceed to section 7.4:

7.4  Mass-spring systems.  Case 1: undamped and unforced oscillations.

In your homework for last week you modeled the spring system below, with no damping.  Although we 
draw the picture horizontally, it would also hold in vertical configuration if we measure displacements 
from equilibrium in the underlying gravitational field.  In fact, we'll do an experiment tomorrow with just 
such a vertical configuration.

Let's make sure we understand why the natural system of DEs and IVP for this system is
m1 x1## t =Kk1 x1 C k2 x2 K x1  
m2 x2## t =Kk2 x2 K x1 K k3 x2  

x1 0 = a1,   x1# 0 = a2 
x2 0 = b1,    x2# 0 = b2 

Exercise 1a)  What is the dimension of the solution space to this homogeneous linear system of differential
equations?  Why?

1b)  What if one had a configuration of n masses in series, rather than just 2 masses?  What would the 
dimension of the homogeneous solution space be in this case?  Why?

We can write the system of DEs in matrix-vector form:
m1 0

0 m2

x1## t

x2## t
=

Kk1 K k2 k2

k2 Kk2 K k3

x1

x2
 .

We denote the diagonal matrix on the left as the "mass matrix" M, and the matrix on the right as the spring 
constant matrix K (although to be completely in sync with Chapter 5 it would be better to call the spring 
matrix KK).  

M x## t = K x .

If we divide each equation by the reciprocal of the corresponding mass, we can solve for the vector of 
accelerations:



x1## t

x2## t
=

K
k1 C k2
m1

k2
m1

k2
m2

K
k2 C k3
m2

x1

x2
 ,

which we write as
x## t = A x .

(You can think of A as the "acceleration" matrix.)
Notice that the simplification above is mathematically identical to the algebraic operation of multiplying by 
preceding matrix equation by the (diagonal) inverse of the diagonal mass matrix M :

M x## t = K x    0 x## t = A x  , with A = MK1K .

How to find a basis for the solution space to conserved-energy mass-spring systems of DEs 
x## t = A x  .

Notice that this is a system of second order DE's.  We could convert it to a system of twice as many first 
order DE's, and then use the methods of section 7.3.  But we'll take a shortcut, based on what worked for 
undamped oscillators and simple harmonic motion in Chapter 5.  The simplest solutions to this 
homogeneous system would be of the form f t v , where v is a constant vector.  In the case of a single 
mass, we got simple harmonic motion spanned by sinusoidal functions cos w0t  and sin w0t , where 

w0 depended on k, m.  We first tried er t but Euler's formula led us to the trig functions.  You can do a 

similar derivation here, starting with guesses of the form eµ tv  , but let's just cut to the chase and try right 
away for solutions of the form

cos w t v   sin w t v   .
If we substitute x t = cos w t v  in the DE system we get

 x## t = A x   0 Kw
2
cos w t v = A cos w t v = cos w t A v  .

This identity will hold c t if and only if
A v = Kw

2
v .

So, v must be an eigenvector of A, but its eigenvalue is l =Kw
2
.  If we used a trial solution 

y t = sin w t v we would arrive at the same eigenvector equation.  This leads to the

Solution space algorithm:  Consider a very special case of a homogeneous system of linear differential 
equations,

x## t = A x  .
If An # n is a diagonalizable matrix and if all of its eigenvalues are negative, then for each eigenpair 

lj, vj  there are two linearly independent solutions to x## t = A x given by 

xj t = cos wj t vj          yj t = sin wj t vj 
with

wj = Klj  .
This procedure constructs 2 n independent solutions to the system x## t = A x, i.e. a basis for the 
solution space.



Remark:  What's amazing is that the fact that if the system is conservative the acceleration matrix will 
always be diagonalizable, and all of its eigenvalues will be non-positive.  In fact, if the system is tethered to
at least one wall (as in the diagram on page 1), all of the eigenvalues will be strictly negative, and the 
algorithm above will always yield a basis for the solution space.  (If the system is not tethered and is free 
to move as a train, then l = 0 will be one of the eigenvalues, and will yield the constant velocity 
contribution to the solution space, c1 C c2 t v, where v is the corresponding eigenvector.  Together with 
the solutions from strictly negative eigenvalues this will still lead to the general homogeneous solution.)

Exercise 2)  Consider the special case of the configuration on page one for which m1 = m2 = m and 
k1 = k2 = k3 = k .  In this case, the equation for the vector of the two mass accelerations reduces to
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a)  Find the eigendata for the matrix
K2 1

1 K2 
 .

b)  Deduce the eigendata for the acceleration matrix A which is 
k
m

 times this matrix.

c)  Find the 4K dimensional solution space to this two-mass, three-spring system.



solution  The general solution is a superposition of two "fundamental modes".  In the slower mode both 

masses oscillate "in phase", with equal amplitudes, and with angular frequency w1 =
k
m

 .  In the faster

mode, both masses oscillate "out of phase" with equal amplitudes, and with angular frequency 

w2 =
3 k
m

 .  The general solution can be written as 

x1 t

x2 t
= C1cos w1tKa1

1

1
CC2cos w2tKa2

1

K1
  

= c1cos w1t C c2sin w1t
1

1
C c3cos w2t C c4sin w2t

1

K1
 .

Exercise 3)  Show that the general solution above lets you uniquely solve each IVP uniquely.  This should 
reinforce the idea that the solution space to these two second order linear homgeneous DE's is four 
dimensional.
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x1 0 = a1,   x1 # 0 = a2 
x2 0 = b1,    x2 # 0 = b2 

Tomorrow:  experiment with a two-mass, three spring configuration, to illustrate the two fundamental 
modes and to compare our linear model to actual data.  Then, consider forced oscillation problems.


