Math 2250-1

Week 4 concepts and homework, due September 14.

Recall that problems which are not underlined are good for seeing if you can work with the underlying concepts; that the underlined problems are to be handed in; and that the Friday quiz will be drawn from all of these concepts and from these or related problems. You will also have a Maple/Matlab project due on Monday September 17.

2.2: equilibria, stability, phase diagram analysis:

23 (this problem was postponed from last week).

2.3: improved velocity-acceleration models:

2, 3, 9, 10, 12: constant, or constant plus linear drag forcing

13, 14, 17, 18: quadratic drag

25, 26: escape velocity

2.4-2.6: numerical methods for approximating solutions to first order initial value problems. Your second Maple/Matlab project addresses these sections too.

2.4: 4: Euler's method

2.5: 4: improved Euler

2.6: <u>4</u>: Runge-Kutta

<u>w4.1)</u> Runge-Kutta is based on Simpson's rule for numerical integration. Simpson's rule is based on the fact that for a subinterval of length 2 h, which by translation we may assume is the interval $-h \le x \le h$, the parabola y = p(x) which passes through the points $(-h, y_0)$, $(0, y_1)$, (h, y_2) has integral

$$\int_{h}^{h} p(x) dx = \frac{2h}{6} \cdot (y_0 + 4y_1 + y_2).$$
 (1)

If we write the quadratic interpolant function p(x) whose graph is this parabola as

$$p(x) = a + b x + c x^2$$

with unknown parameters a, b, c then since we want $p(0) = y_1$ we solve $y_1 = p(0) = a + 0 + 0$ to deduce that $a = y_1$.

<u>w4.1a)</u> Use the requirement that the graph of p(x) is also to pass through the other two points, $(-h, y_0)$, (h, y_2) to express b, c in terms of h, y_0 , y_1 , y_2 .

<u>w4.1b)</u> Compute $\int_{-h}^{h} p(x) dx$ for these values of a, b, c and verify equation (1) above.

