
Math 2250-1
Week 14 concepts and homework, due November 30.

Recall that all indicated problems are good for seeing if you can work with the underlying concepts; that 
the underlined problems are to be handed in; and that the Friday quiz will be drawn from all of these 
concepts and from these or related problems.

7.3  homogeneous and non-homogeneous linear systems of differential equations; general solution as the 
sum of a particular solution plus the general homogeneous solution.
7.3. 34 (postponed from last week).
w14.1  Consider a general input-output model with two compartments as indicated below.  The 
compartments contain volumes V1, V2 and solute amounts x1 t , x2 t  respectively.  The flow rates 
(volume per time) are indicated by ri , i = 1 ..6 .  The two input concentrations (solute amount per volume) 
are c1, c5.

a)  What equalities between the flow rates guarantee that the volumes V1, V2 remain constant?
b)  Assuming the equalities in a hold, what first order system of differential equations governs the rates of 
change for x1 t , x2 t  ?

c)  Suppose r2 = r3 = r6 = 100, r1 = r4 = 200, r5 = 0 
gal

hour
 ; c1 = 0.6, c5 = 0  
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;  V1 = V2 = 100 gal .  

Verify that the constant volumes are consistent with the rate balancing required in a.  Then show that the 
general system in b reduces to the following system of DEs for the given parameter values:
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d) Solve the initial value problem for c, assuming there is initially no solute in either tank.  Hint:  Find a 
particular solution which is a constant vector, and then use x = xPC xH to solve the IVP.
e)  Check your answer to d with technology, and hand in a copy of this verification.  For example, in 
Maple, the "dsolve" command can solve systems of differential equations as well as single differential 
equations.
f) Laplace transform works for systems of linear differential equations as effectively as for single linear 
DEs. Laplace transform each of the DE's and initial conditions in c,d  and solve the resulting system of 
two equations in two unknowns for Laplace transforms X1 s , X2 s  .  Decompose these expressions 
using partial fractions (either by hand or with technology-recommended!), and invert to find x1 t , x2 t  a 
third time. 

7.4) Second order systems of differential equations arising from conservative systems.  Identifying 
fundamental modes and natural angular frequencies; forced oscillation problems and the potential for 
practical resonance when the forcing frequency is close to a natural frequency.
7.4: 2, 3, 8, 12, 13, 14, 16, 18 .



w14.2)  This is a continuation of 2.  Now let's force the spring system in problem 2, with a sinusoidal 
force on the first mass at (variable) angular frequency w, as in the slightly different text example on pages 
440-442.  Thus we consider the system
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a) Find a particular solution of the form
xP t = cos w t c .

Hint:  Plug this guess into the differential equation.  You will notice that each term simplifies to some 
vector times the function cos w t  .  Thus, after you factor out the cos w t  term you are left with a matrix
equation to solve for c = c w  .  You will get formulas analogous to equations (34, 35) on page 441, 
except your c1, c2 will blow up at w = 1, 3 , the natural frequencies for this problem.
b) The general solution to this forced oscillation problem is the particular solution from part (a), plus the 
general solution to the homogeneous problem, which you found in problem (2).  In a physical problem 
with a slight amount of damping but the same masses and spring constants, the particular solution would 
be close to the one you found in part (a),  and the homogeneous solutions would be close to the ones you 
found in problem 2, except that they would be (slowly) exponentially decaying because of the damping.  
Thus the particular solution would be the steady periodic solution, and the homogeneous solution would 

be transient.  By plotting the magnitude c w = c1 w
2
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2
 as a function of w, you create a

"practical resonance" chart analogous to those we created in Chapter 5.  Create such a plot, for the angular 
frequency range 0 % w% 5.  Use F0 = 4 .  Your plot should look like Figure 7.4.10, except your 

magnitude function will peak at w = 1, 3 .

w14.3)  This is a continuation of 12.  As we discussed in class on Monday November 26, if a matrix is 
multiplied by a scalar c , then the eigevectors of the new matrix are the same as the eigenvectors of the 
original matrix, but the corresponding eigenvalues are all multiplied by c .  (This is the simple fact that if 
A v = lv then (cA v = c lv  .)
a)  Suppose the same configuration as in 12 in which all the spring constants are equal and all the masses 
are equal, except that now the numerical values are related by k = 9 m rather than k = m (so the springs are 
stiffer relative to the mass). How are the new natural frequencies related to what they were in problem 12? 
How about the natural modes?
b)  What if it was the reverse situation, i.e. heavy masses relative to the spring constants, so that e.g. 
m = 5 k ?

w14.4)  This is a continuation of 18.  In physics you learn that you can recover the final velocities from the
initial ones in a conservative problem like 18 by equating the initial momentum m1v0 to the final 
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2 , and solving this system of equations for v1 and v2 .  Carry this procedure out for the 

data in 18 and show that your answer agrees with your work in that problem.


