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9.4  Nonlinear systems of first order differential equations arising from second order mechanical 
oscillation problems.  

,  Discuss the freely rotating rigid-rod pendulum, Tuesday's notes.  We set up the equivalent first order 
system in Exercise 2, and found the equilibrium solutions.  Complete Exercise 3 there,  then also this 
additional portion here:

3 continued) In terms of deciding the stability for the equilibrium solutions with x = n p, n even, which 
linearize to stable centers, and so are borderline for the non-linear system, there is a separation of variables 
trick that resolves the issue in this case. It relies on the Calculus fact (which we've used before) that

dy
dx

=
y# t
x# t

 .

Thus, for the pendulum system,

dy
dx

=K

g
L

 sin x

y
. 

3c)  Separate variables above, and use your work to show that the equilbrium solutions to the non-linear 
system are stable, when n is even.
3d)  How is your work in c related to conservation of energy in the original pendulum problem?



> > 

> > 

3e)  One way to visualize the results above is to create the 3-d graph of (a multiple) of the total energy 

function.  In the case 
g
L

= 1 and if we add a constant so that the total energy is zero at the stable equilbria, 

this is the function f x, y =
1
2
y2 C 1K cos x  .  Notice that the contours correspond to the original 

pplane solution trajectories.

with plots :

 plot3d 1K cos x C
1
2
$y2, x =K8 ..8, y =K3 ..3, axes = boxed ;



Nonlinear springs:   Consider our usual mass-spring configuration

only now, consider non-linear (but still autonomous) forcing functions:
m x## t = F x  

                                             =Kk x Ca x2 C b x3 C...  
The linear model, F x =Kk x assumes perfect "Hookesian" springs.  By considering more terms in a 
Taylor expansion as above, we can model different situations.

,   If the forcing function is an odd function, it could be natural to use a model
m x##=Kk x C b x3 .

If b ! 0 the return force is stronger than in the Hooke's case, i.e. a hard spring.  If b O 0  the return force 
is weaker than expected, i.e. a soft spring.  

,  The forcing function might not be an odd function, in which case a model such as
m x##=Kk x C a x2 

might be appropriate.

,     We can convert any such spring equation
m x## t = F x  

into the equivalent first order system for position and velocity,
x# t = v 

        v# t =
F x
m

 .

Notice that the equilibrium (constant) solutions for the first order system, v = 0, F x = 0 correspond to 
the equilibrium (constant) solutions of the autonomous second order DE.
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Exercise 1)  Consider the soft spring problem
x## t =K16 xC x3 .

1a)  Convert this to an equivalent first order system of DEs.
1b)  Find the equilibrium solutions to the first order system of DEs, and note how they are equivalent to 
the equilibrium solutions to the second order DE we started from.
1c)  Linearize the first order system at the equilbrium solutions, and discuss the stability (or borderline 
issues) at each equilibrium.  Compare to the phase portrait below.
1d)  Use a "total energy" computation - either physics or separation of variables will work, to resolve the 
borderline case.

with plots :

 plot3d
1
2 $v2 C 8$x2 K

1
4 $x4, x=K6 ..6, v=K6 ..6, axes = boxed ;



why the complex eigenvalue with real part equal to zero in the linearized problem (stable center) is 
borderline for the non-linear problem:

For all three examples below, the linearization at the origin is
x# t = y
y# t =Kx

x# t

y# t
=

0 1

K1 0

x

y
 

and the Jacobian matrix has eigenvalues l =G i .


