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Math 2250-1
FINAL EXAM
December 10, 2012

This exam is closed-book and closed-note. You may use a scientific calculator, but not one which is
capable of graphing or of solving differential or linear algebra equations. Laplace Transform tables are
included with this exam. In order to receive full or partial credit on any problem, you must show all
of your work and jnsti1~’ your coilciusions. This exam counts for 30% of your course grade. It has
been written so that there are 150 points possible, and the point values for each problem are indicated in
the right-hand margin. Good Luck!

problem score possible

1 20

2 ______ 10

3 20

4 15

5 10

6 15

7 20

8 15

9 25

total 150
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Here is a matrix and its reduced row echelon form:

3 9 -5 1 0

—6 2 -2 0 reduced row echelon form of A:

1 3 -2 0 0
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Find the general solution to the homogeneous matrix equation A&= ~.. Write your solution in linear
combination form.
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Let b be the first colunm ofA, i.e.
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What is the general solution to the non-homogeneous equation A x= b? Hint: since you afready know the
homogeneous solution from part g, you only need to find a particular solution and superposition in order to
deduce your answer. Since a matrix times a vector is just a linear combination of the columns, and since
you want A 410 be the first column ofA, there is a natural choice for 4.
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3). Consider the following initial value problem, which could arise from Newtons second law in a forced
mass-spring oscillation problem:

constant, mass, and damping coefficients? Include correct units.
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3~ Solve this initial problem using the methods of Chapter 5, based on particular and homogeneous
solutions.
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41 Re-solve the initial value problem in a using Laplace transfonns:

x’’(t) +6x’(t) +25x(t)=50
x(O)=O

x’ (0) = 6.
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Use Lapiace transforms to solve the initial value problem

x” (t) + w~x(t) = ~cos(w0 t)

x(O) =x0
x’ (0) =

0
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~i Find the general solution to the first order system of differential equations
x1’(t) _3 I

x21(t) 2 —2

Hint: The eigenvalues of the matrix are negative integers.
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~ Sketch the phase portrait for this linear hoi ogeneous first order system, based on your work and
eigendata in part a. Classify the equilbrium point at the origin. S~hu X~ ,‘X~ (0
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fl Consider a general input-output model with two compartments as indicated below. The compartments
contain volumes V~, V~ and solute amounts x1 (t), x2 (t) respectively. The flow rates (volume per time) are

indicated by p., 1 1 . .6. The two input concentrations (solute amount per volume) are c1, c5.
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~ Supposer2 = p3 = = 100, r~ = r4 200, r5 = 0 . Explain whythevolumes V~(t), V2(t)

remain constant.
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2k). Solve the initial value problem for the system
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assuming there is initi 1 no solute in either Hint: Find a particular solution which is a constant
vector, and then use x = + o so e P. Notice that you have already found iii problem 6.
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Find the general solution to this second order system of differential equations, which could arise when
modeling a coupled mass-spring system. Hint: You have already computed eigendata for the relevant
matrix in problem ~..

x1’’(t) =—3x1 +x2

‘‘(1) = 2 — 2
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~ For Hooke’s constants and masses as shown below, show that the displacement functions
x1 (t), x2 (t) of the two masses below (from their equilibrium hanging positions) satisfy the system of

differential equations in this problem.
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(i~ 0’’(r) + fsin(oQ)) =0.

x’(t) 1

y’ (t) =- fsirqx)
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2U Find all equilibrium (i.e. constant) solutions to the first order system ofbE’s above. Explain how
these equilibrium solutions are related to the constant solutions of the second order differential equation for
rigid-rod pendulum.
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We have studied and returned to the rigid rod pendulum several times in this course. This is the freely-
rotating configuration indicated in the diagram below:
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Using conservation of energy we have derived the autonomous second order differential equation that
describes the angle e ( t) of the mass from the vertical reference line, at time 4 arriving at

That second order DE above is equivalent to the autonomous first order system of two differential
equations

U)
Explain this equivalence.
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system repeated for your convenience:
x’(t) y

y’(t) =-fsin(x)

~ Use linearization and the Jacobian matrix to classit~’ the equilbriurn solutions to the first order system
above. Indicate what you can deduce about the stability of these equilibrium solutions based only on the
linearization.
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9~). Use the sep~ahön of v iables method we discussed in class (or if you prefer, use conservation of
energy), to show that the parametric solution curves (x(t), y(1)) to the first order system above lie on the
level curves for a certain function. Explain why this shows that the equilibrium solutions that are
borderline based on the linearization work in ~, are actually stable for the original non-linear system.
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Table of Laplace Transforms
This table summarizes the general properties of Laplace transforms and the Laplace transforms of particular functions
derived in Chapter 10.

fQ) F(s) adl

af(t) ± bgQ) aF(s) + hG(s) (s )n+l

f’Q) sF(s)—f(O) coskt

f”U) s2F(s) — sf(O) — [(0) sink:

?F(s) — s”~f(0) — .. . — f~”(O) coshkt s

f f(r)dr sinhk:

e~’f(:) F(s — a) e~’ cask: (s —a)2±k2

uQ — a)JQ — a) r°’F(s) e°’ sink? (s — a)2 ±k2

~~r~ga — r) di F(s)G(s) ~$sinkt — ki coskt) (2 k2)2
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