& Chapter 1 First-Order Differential Equations
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FIGURE 1.1.7. The sojutions of
y = y? defined by
vx) = 2/(3 ~ 2x).

B} Problems

In Problems 1 through 12, verify by substitution that each
given function is a solution of the given differential equation.
Throughout these problems, primes denote derivatives with re-

spect 10 X,
1L v e3xhy=x+7
2. ¥+ 2y=0y= Je=

~3, v b4y == O]y = 008 2x, ¥, = s$ip 2x

4y =9p=et ="

We also will sample the wide range of applications of such equations. A typical
mathematical model of an applied siuation will be an imitial value probiem, con-
sisting of a differential equation of the form in (17) together with an initial condi-
tion v(xy) = vo. Note that we call y{xg) = Yo an initial condition whether or not

x5 = 0. To solve the ipitial value problem

dy . . .

e X, ¥ Y0 =0 {18)
dx

means to find a differentiable function y = y{x) that satisfies both conditions in

Eg. (18) on some interval containing Xg.

Given the solution v(x) = IHC — x) of the differential equation dy/dx = v?
discussed in Example 7, solve the initial value problem
dy
dx

2

v, vy =12

We need only find a value of C so that the solution y(x) = I/{C — x) satisfies the
initial condition y(1) = 2. Substitution of the values x == | and ¥ = 2 in the given
solution yields

i
7= (1) = —,
¥ = =7,
g0 2C — 2 = 1, and hence C = 3. With this value of C we obtain the desired
solution
) = T 2
P =T T T i

s

Figure 1.1.7 shows the two branches of the graph y = 2/(3 — 2x). The {eft-hand
branch is the graph on (—c<, %) of the solution of the given initial value problem
y' = v2, y(1) = 2. The right-hand branch passes through the point (2, —2) and.is
therefore the graph on (%, oo) of the solution of the different initial value problem

y =y, y(2) = -2 E

The central question of greatest immediate interest to us js this: If we are given
a differential equation known to have a solution satisfying a given initial condition,
how do we actually find or compule that solution? And, once found, what can we do
with it? We will see that a relatively few simple techniques—separation of variables
(Section 1.4), solution of linear equations (Section 1.5), elementary substitution
methods (Section 1.6)—are enough to enable us to solve a variety of first-order
equations having impressive applications.

ﬁ ),f =y + 2€7‘%:}' s g% — e ¥
6y +4y +ay =0y = = xe
Y =2y 2y =01y = et o8y, ¥y = et sinx
@ Y7y == 3008 2x, ¥y = COS X —COS 2x, ya = SINX—COS 2

X : :
(9) v + 23y =01y = +
bAx=
0 Y +xy —y=hxy =x—lhx,m=—— Inx
v e 1 Inx
11, 3%y +5xy +4y =0y = =5, 2 = 73
x? x?
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12. <3y —xy H Iy = 0y yy = xcos(inx), y2 =X sin{in 1}

In Problems 13 through 16, substitute v = & into the given
differential equation 10 determine all values of the constani ¥
for which y = &% is a solution of the equation.
: 3
4. 4y =y -

. 3y =12y
Yoy =2y =0 ®3y”+3}"m~4}f:0

In Problems 17 through 26, first verify that v(x) satisfies the
given differential equation. Then determine a value of the con-
stant C so that y(x) satisfies the given initial condition. Use
computer or graphing calculator (if desired) t0 sketch several
typical solutions of the given differential equation. and high-

light the one that satisfies the given initial condition,

%o
L i}zﬁj‘
5

s

17. v +y =0 pla) = Ce™, ¥ =2
8. v = 2y y{x) = Ce¥, vy =3
)y = v+ Ly = Ce — L. ¥(0) =5
Dy =a— vy} = Ce™ "t“,f -1, vy =10
21 v 37y =0yl = Ce™, y(@) =7
22, ¥y = Liyix) = nix + ), y(0) =0
23, x% 43y =220 y(x) = ix% 4 Cx L yii=1
24, xy =3y =xhyx) = HC +Inx), y(1y =17
25, v =307 H Dyl = tan{x® + C), y(0) =1
26. y + ytanx = cosxy y(x) = (X + Cycosx, yimy =0

In Problems 27 through 31, a function y = gixy is described
by some geomelric property of its graph. Write a differential
equation of the form dy/dx = f(x, y) having the function g
ax its selution (or as one of its solutions).

a7, The slope of the graph of g at the point {x, ¥) is the sum
of x and .

28. The line tangent to the graph of g at the point {x. y) inter-
sects the x-axis at the point {x/2,0).

Every straight line normal to the graph of g passes through
the point (0. 1). Cun you guess what the graph of such a
function g might look like?

30. The graph of g is normal to every curve of the form
y=xl+kkisa constant) where they meet.

@ The line tangent to the graph of g at (x, y) passes through

the point {(—y, X}

In Problems 32 through 30, write—in the manner of Eqs. {3)
through (6] of this section—a differential equation that is a
mathematical model of the situation described.

32. The time rate of change of a population P is proportional

. »_ o the square 100t of P.

335 The time rafe of change of the velocity v of a coasting
motorboat is proportional to the square of v.

34. JThe acceleration duv/di of a Lambaorghini is proportional
to the difference between 250 xm/h and the velocity of the
car.

35,0 In a city having & fixed population of £ persons. the time
rate of change of the number A of those persons who have
heard a certain rumor 18 proportional to the pumber of
those who have not yet heard the rumor.

@ In a city with a fixed population of £ persons, the time rate

of change of the number N of those persons infected with
4 certain contagious disease is proportional to the product
of the number who have the disease and the number who
do not.

In Problems 37 through 42, determine by inspection at least
ane solution aof the given differential equation. That is, use
vour knowledge of derivatives 1o make on intelligent guess.
Then test vour hypothesis.

37 v =0 38 y =¥
38 xy +y= 3y 40, ()2 -+ y=1
4L ¥ by =¢ 2.y +y=0

43. (@) If k is a constant, show that a general (one-parameter)
solution of the differential equation

dx .
e TR bx”
di
is given by x{f) = i/(C — ki), where C'is an arbitrary
constant.

(b) Determine by inspection & solution of the initial value
problem x' = kx*, x(0) = 0.

44. (a) Continuing Problem 43, assume that & is positive, and
then sketch graphs of solutions of x” = kx? with sev-
eral typical positive values of x(0).

(b) How would these solutions differ if the constant &
e were negative?
-45, Suppose a population P of rodents satisfies the differen-

=" gal equation dP/di = kP?. Initially, there are P(0) = 2

rodents. and their number is increasing at the rate of
dP/dt == 1 rodent per month when there are P = 10 ro-
dents. How long will it take for this population to grow
to a hundred rodents? To a thousand? What's happening
here?
Suppose the velocity v of a motorboat coasting in water
satisfies the differential equation dv/dt = kv, The initial
speed of the motorboat is v{®) = 10 meters per second
(m/s), and v is decreasing at the rate of 1 m/s? whenv =3
m/s. How long does it take for the velocity of the boat 10
decrease to 1 m/s? To ;15 m/s? When does the boat come
to a stop?

47. In Exampie 7 we saw that y{(x) = /{C — x) defines a
one-parameter family of solutions of the differential equa-
tion dyfdx = yi. {a) Determine a value of € so that
v{i0) = 10. (1) Is there a value of C such that y(() = 07
Can you nevertheless find by inspection a solution of
dvjdx = v* such that y{h) = 7 (¢) Figure 1.1.8 shows
typical graphs of solutions of the form v(x) = 1/(C — x).
Does it appear that these colution curves fill the entire xy-
plane? Cun you conclude that, given any point {a, b) in
the plane, the differential equation dyjdx == v has ex-
actly one solution y(¥] satisfying the condition y(a) = b7
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1.2 integrais Os General and Particuiar Solutions
for the swimmer's {rajectory. The initial condition y (»u%} = yields C = 1,80
vi{x) = 3x - 4% 4+ 1
Then .
(1) =30 -4 +1=2

so the swimmer drifts 2 miles downsiream while he swims | mile across the river.
2

BE] Problems

In Problems 1 through 10, find a function y = £(x) satisfy- 10
ing the given differential equation and the prescribed initial
condition. gl
dy
L2 ey @ =3 B T .
dx R 5
dy TN
3. Y -ty =1 Al TN
Ir (x — 27 y(2) .
dy 21 AU o oA
3~3—§:«/35;y(4)=0 SRR \
dy _ ! % ST e s 10
4, == i y(By=5 2 1
de  x? ¥ !
5 dy i @ | FIGURE 1.2.6. Graph of the
. TS cyla) = velocity function p(1) of Problem 19,
| dx Jr2 101"—5 % \ :
@' =+ Gy =0 . : :
dx gl |
dy 10 dy _
& ey @) =0 g, — =cos2x yi0y=1 6l . . o
dx xz_%,;“"( ) dx % 340 (5.5) :
= T
dy i dy _ 4 e :
9, — = ;0 ﬂ()@“—'—ﬂxe"“;v(}r_l A
dx  J1--x* YO dx y© //:
2 A
In Problems 11 through 18, find the position function x{t) of a //
4]

moving particle with the given acceleration alt), initial posi-

tion xo = x{0), and initial velocity vy =

v(().

11‘ a<l) = 50. Vg = L{}, Xg = 20
12, alf) = 20, vy = —15, xg = 5

in Prob

rravels along the x-axis with the velocity function
graph is shown in Figs.

lems 19 through 22, a particle starts ol the origin and

u(ty whose
12,6 through 1.2.9. Sketch the graph

of the resulting position function x (for0 =1 2 10

0 2 4 6 3

FIGURE 1.2.7. Graph of the

10

velocity function v(f} of Problem 20.

a(ty = 3¢, vg = 3, %o = 0 A0 I j ; :
T4 a() =20+ Lug=—T.x0 =4 5t 1
15, a(t)y =4+ 3y =Ly =1
i S b
16. a(r) = Mm, v = —1. %=1 ° .3
- N EaN

17 : 0 0 ! SN

Loale) = TENTE L by == UL X T ,/"_ : : \\&.
180 a(r) = 50sin 51, vg = —i0. %0 = 8 2 SN

0 / .‘ : ; >

FIGURE 1.2.8. Graph of the
valocity

funcion v{(4) of Probiem AR
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FIGURE 1.2.8, Graphof the
velocity function (1) of Problem 22,

What is the maximum height attained by the arrow of part
(b) of Example 37
A ball is dropped from the top of a building 400 ft high.
How long does it take to reach the ground? With what
speed does the ball strike the ground?

he brakes of a car are applied when it is moving at 100
km/h and provide a constant deceleration of 10 meters per
second per second (m/ §%). How far does the car travei be-
fore coming to a stop?
A projectile is fired straight upward with an initial veloc-
ity of 100 m/s from the top of a building 20 m high and
falls to the ground at the base of the building. Find (a) its
maximum height above the ground; {b} when it passes the
top of the building; (¢) its total time in the air,
A ball is thrown straight downward from the top of a tall
building. The initial speed of the ball is 10 m/s. it strikes
the ground with a speed of 60 m/s. How tall is the build-
ing?
A baseball is thrown straight downward with an initial
speed of 40 ft/s from the top of the Washington Monu-
ment (555 ft high). How long does it take to reach the
ground, and with what speed does the basebal} strike the
ground?
A diesel car gradually speeds up so that for the first 10s
its acceleration is given by

%}*i = (I + (060 (ft/s5).

if the car starts from rest (xp = 0, vy = 0), find the dis-
tance it has traveled at the end of the first 10 s and its
velocity at that time.

A car traveling at 60 mi/h (88 ft/s) skids 176 ft after its
brakes are suddenly applied. Under the assumption that
the braking system provides constant deceleration, what
is that deceleration? For how long does the skid continue?
The skid marks made by an automobile indicated that its
brakes were fully applied for a distance of 75 m before it
came to a stop. The car in question is known to have a con-
stant deceleration of 20 m/s? under these conditions. How
fast—in km/h—was the car traveling when the brakes
were first applied?

32. Suppose that & car skids 15 m if it is moving at 30 km/h
when the brakes are applied. Assuming that the car has
the sume constant deceleration, how far will it skid if 11 is

. moving at 100 km/h when the brakes are applied?

(33.) On the planet Gzyx, a bail dropped from = height of 20 1t

™ hits the ground in 2 s. If a ball is dropped from the top of

a 200-fi-tall building on Gzyx, how long will it take to hit
the ground? With what speed will it hit?

A person can throw a ball straight upward from the sur-
face of the earth to a2 maximum height of 144 {t. How
high could this person throw the ball on the planet Gzyx
of Problem 337

35. A stone is dropped from rest at ap initial height 7z above
the surface of the earth. Show that the speed with which it
strikes the ground is v = ./2gh.

36. Suppose a woman has enough “spring” in her legs to jump
(on earth) from the ground to a height of 2.25 feet. If
she jumps siraight upward with the same initial velocity
on the moon-——where the surface gravitational acceleration
is (approximately) 5.3 f/s’-—how high above the surface
will she rise?

37. Al noon a car staris from rest at point 4 and proceeds at
constant acceleration along a straight road toward point
B. If the car reaches B at 12:50 P.M. with a velocity of
60 mi/h, what is the distance from A to B?

38. At noon a car staris from rest at point A and proceeds with
constani acceleration along a straight road toward point C,
35 miles away. If the constantly accelerated car arrives at
¢ with a velocity of 60 mi/h, at what time does it arrive
at C7 '

@ a = 0.5miand vy = 9 mi/h as in Bxample 4, what
must the swimmner’s speed vg be in order that he drifts
only 1 mile downstream as he crosses the river?

.? Suppose that a = 0.5 mi, vp = 9 mi/h, and vs = 3 mi/h

as in Example 4, but that the velocity of the river is given
by the fourth-degree function

o E
Vp — Uy -
at

rather than the quadratic function in Eq. (18). Now find
how far downstream the swimmer drifis as he crosses the
river,

41. A bomb is dropped from a helicopter hovering at an ali-
wde of 800 feet above the ground. From the ground di-
rectly beneath the helicopter, a projectile is fired straight
upward toward the bomb, exactly 2 seconds after the bomb
is released. With what initial velocity should the projectile
be fired, in order to hit the bomb at an altimde of exactly
400 feet?

42. A spacecraft is in free fall toward the surface of the moon
at a speed of 1000 mph {mi/h). Its retrorockets, when
fired, provide a constant deceleration of 20,000 mi/h?. At
what height above the lunar surface should the astropauts
fire the reirorockets to insure a soft touchdown? {(As in
Example 2, ignore the moon’s gravitational field.)




43.

Arthur Clarke's The Wind from the Sun (1963) describes
Diana, a spacecraft propelled by the solar wind. Hs alu-
minized sail provides it with a constant acceleration of
0.001g = 0.0098 m/s’. Suppose this spacecraft starts
from rest at time ¢ = 0 and simultaneously fires a pro-
jectile (straight ahead in the same direction) that travels at
one-tenth of the speed ¢ == 3 % 10° m/s of light. How fong
will it take the spacecraft to catch up with the projectile,

1.3 Slope Fieglds and Solution Curves 19

wand how far will it have traveled by then?

# driver involved in an accident claims he was going only

L2305 mph. When police tested his car, they found that when

its brakes were applied at 25 mph, the car skidded only
45 feet before coming to a stop. But the driver’s skid
marks at the accident scene measured 210 feet. Assum-
ing the same (constant) deceleration, determine the speed
he was actually traveling just prior to the accident.

Slope I z@ﬁﬁ% :;‘;;"gg% Solution Curves
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FIGURE 1.3.1. A solution curve
for the differential equation
y = x — y together with tangent
lines having
« slopem,; = x; — y atthe
point (x(, y1);
+ slopems = x; — y; at the
point (x. v2); and

s slopem; = x3 — y; atthe
p()iﬁt {x3, ¥3).
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Exampt

.

Consider a differential equation of the form
dy
e = F o, Y , (1
o=l (hH

where the right-hand function f (x, y) involves both the independent variable x and
the dependent variable y. We might think of integrating both sides in {1) with re-
spect to x, and hence write y{x} = f Fix, y(x)dx + C. However, this approach
does not lead to a solution of the differential equation, because the indicated integral
involves the unknown function v(x) itself, and therefore cannot be evaluated explic-
itly. Actually, there exists no straightforward procedure by which a general differen-
tial equation can be solved explicitly. Indeed, the solutions of such a simple-looking
differential equation as ¥’ = x? + y# cannot be expressed in terms of the ordinary
elementary functions studied in calculus textbooks. Nevertheless, the graphical and
numerical methods of this and later sections can be used to construct approximate

solutions of differential equations that suffice for many practical purposes.

Slope Fields and Graphical Solutions

There is a simple geometric way to think about solutions of a given differential
equation y' = f(x, y). At each point (x, v} of the xy-plane, the value of f(x,y)
determines a stope m = f(x, y). A solution of the differential equation is simply a
differentiable function whose graph v = y(x) has this “correct slope” at each point
(x, y(x)) through which it passes——that is, v(x) = f(x.v(x)). Thus a solution
curve of the differential equation y' == f(x, y)—the graph of a solution of the
equation—is simply a curve in the xy-plane whose tangent line at each point (x, v}
has slope m = f(x,y). For instance, Fig. 1.3.1 shows a solution curve of the
differential equation ¥y = x — y together with its tangent lines at three typical
points.

This geometric viewpoint suggests a graphical method for constructing ap-
proximate solutions of the differential equation v = f(x,v). Through each of a
representative collection of points (v, v} in the plane we draw a short line segment
having the proper slope m = f{x.y). All these line segments constitute a slope
field (or a direction field) for the equation y' = f(x, ¥).

Figures 1.3.2 (a)—{(d) show slope fields and solution curves for the differential equa-
tion
dy
—= = ky ¢4
dx

with the values k = 2, 0.5. —1, and -3 of the parameter & in Hg. (2). Note that each
slope field yields important qualitative information about the set of all solutions



