Student I.D.

Math 2250-1

Quiz 8

October 28, 2011

SOLUTIONS

1) Consider the differential equation for $x(t)$, which could arise in a model for damped mechanical motion:

$$
x^{\prime \prime}(t)+2 \cdot x^{\prime}(t)+5 \cdot x(t)=0 .
$$

1a) Find the general solution to this differential equation.
(6 points)
$p(r)=r^{2}+2 \cdot r+5$. We wish to solve $p(r)=0$:

$$
\begin{gathered}
r^{2}+2 \cdot r+5=0 \\
(r+1)^{2}+4=0 \\
(r+1)^{2}=-4 \\
r+1= \pm 2 \cdot i \\
r=-1 \pm 2 \cdot i
\end{gathered}
$$

Of course, we could also use the quadratic formula, $r=-\frac{2 \pm \sqrt{4-20}}{2}$, which simplifies to the same answer. Thus the general solution for $x=x(t)$ is

$$
x(t)=c_{1} \cdot e^{-t} \cdot \cos (2 \cdot t)+c_{2} \cdot e^{-t} \cdot \sin (2 \cdot t) .
$$

1b) What kind of damping is illustrated in this differential equation and its solutions?
(1 point)
underdamped, because the solution oscillates through $x=0$ infinitely often....this happens whenever the roots of the characteristic polynomial are complex.

1c) Use your work in (1a) to solve the initial value problem

$$
\begin{gather*}
x^{\prime \prime}+2 \cdot x^{\prime}+5 \cdot x=0 \\
x(0)=-1 \\
x^{\prime}(0)=3 \tag{3points}\\
x(t)=c_{1} \cdot e^{-t} \cdot \cos (2 \cdot t)+c_{2} \cdot e^{-t} \cdot \sin (2 \cdot t) \\
x^{\prime}(t)=c_{1} \cdot\left[-e^{-t} \cdot \cos (2 \cdot t)+e^{t} \cdot(-2) \cdot \sin (2 \cdot t)\right]+c_{2} \cdot\left[-e^{-t} \cdot \sin (2 \cdot t)+2 \cdot e^{-t} \cdot \cos (2 \cdot t)\right] . \\
x(0)=-1=c_{1} \\
x^{\prime}(0)=3=-c_{1}+2 \cdot c_{2} .
\end{gather*}
$$

The first equation implies $c_{1}=-1$, so from the second equation we deduce $c_{2}=1$.

$$
x(t)=e^{-t} \cdot(-\cos (2 \cdot t)+\sin (2 \cdot t))
$$

If you'd had more time for the quiz, I could have asked for this solution to be converted into time-varying amplitude-phase form,

$$
x(t)=C \cdot e^{-t} \cdot(\cos (2 t-\alpha))
$$

