Student I.D.

Math 2250-1
 Quiz 7
 October 21, 2011 SOLUTIONS

1) Consider the differential equation for $y(x)$

$$
y^{\prime \prime}+5 \cdot y^{\prime}+6 \cdot y=0
$$

1a) Find the general solution to this differential equation.
(6 points)
trying $y(x)=e^{r \cdot x}$ yields $L(y)=e^{r \cdot x} \cdot\left(r^{2}+5 \cdot r+6\right)$ so in order for $e^{r \cdot x}$ to be a solution, r must be a root of the characteristic polynomial

$$
r^{2}+5 \cdot r+6=(r+3) \cdot(r+2)
$$

Since the roots are $r=-3,-2$ the general solution is

$$
y_{H}(x)=c_{1} \cdot e^{-3 \cdot x}+c_{2} \cdot e^{-2 \cdot x}
$$

1b) What is the dimension of the solution space above?
(1 point)
Since there are two basis functions, $y_{1}=e^{-3 \cdot x}, y_{2}=e^{-2 \cdot x}$ for the solution space, the dimension is two.
1c) Use your work in (1a) to solve the initial value problem

$$
\begin{gather*}
y^{\prime \prime}+5 \cdot y^{\prime}+6 \cdot y=0 \\
y(0)=-1 \\
y^{\prime}(0)=4 \tag{3points}\\
y(x)=c_{1} \cdot e^{-3 \cdot x}+c_{2} \cdot e^{-2 \cdot x} \\
y^{\prime}(x)=-3 \cdot c_{1} \cdot e^{-3 \cdot x}-2 \cdot c_{2} \cdot e^{-2 \cdot x}
\end{gather*}
$$

at $x=0$:

$$
\begin{gathered}
-1=c_{1}+c_{2} \\
4=-3 \cdot c_{1}-2 \cdot c_{2} \\
{\left[\begin{array}{r}
-1 \\
4
\end{array}\right]=\left[\begin{array}{rr}
1 & 1 \\
-3 & -2
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right]} \\
{\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{rr}
1 & 1 \\
-3 & -2
\end{array}\right]^{-1}\left[\begin{array}{r}
-1 \\
4
\end{array}\right]=\frac{1}{1} \cdot\left[\begin{array}{rr}
-2 & -1 \\
3 & 1
\end{array}\right]\left[\begin{array}{r}
-1 \\
4
\end{array}\right]=\left[\begin{array}{r}
-2 \\
1
\end{array}\right] .}
\end{gathered}
$$

So

$$
y(x)=-2 \cdot e^{-3 \cdot x}+e^{-2 \cdot x}
$$

