Name_____

Student I.D._____

Math 2250–1 Quiz 7 October 21, 2011 **SOLUTIONS**

1) Consider the differential equation for y(x)

 $y'' + 5 \cdot y' + 6 \cdot y = 0$.

1a) Find the general solution to this differential equation.

(6 points)

trying $y(x) = e^{r \cdot x}$ yields $L(y) = e^{r \cdot x} \cdot (r^2 + 5 \cdot r + 6)$ so in order for $e^{r \cdot x}$ to be a solution, r must be a root of the characteristic polynomial

 $r^2 + 5 \cdot r + 6 = (r+3) \cdot (r+2)$. Since the roots are r = -3, -2 the general solution is $y_H(x) = c_1 \cdot e^{-3 \cdot x} + c_2 \cdot e^{-2 \cdot x}.$

1b) What is the dimension of the solution space above?

(1 point) Since there are two basis functions, $y_1 = e^{-3 \cdot x}$, $y_2 = e^{-2 \cdot x}$ for the solution space, the dimension is two.

1c) Use your work in (1a) to solve the initial value problem

So

$$y'' + 5 \cdot y' + 6 \cdot y = 0$$

$$y(0) = -1$$

$$y'(0) = 4.$$
(3 points)

$$y(x) = c_1 \cdot e^{-3 \cdot x} + c_2 \cdot e^{-2 \cdot x}$$

$$y'(x) = -3 \cdot c_1 \cdot e^{-3 \cdot x} - 2 \cdot c_2 \cdot e^{-2 \cdot x}$$

$$-1 = c_1 + c_2$$

$$4 = -3 \cdot c_1 - 2 \cdot c_2.$$

$$\begin{bmatrix} -1 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -3 & -2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

$$\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -3 & -2 \end{bmatrix}^{-1} \begin{bmatrix} -1 \\ 4 \end{bmatrix} = \frac{1}{1} \cdot \begin{bmatrix} -2 & -1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 4 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}.$$

 $y(x) = -2 \cdot e^{-3 \cdot x} + e^{-2 \cdot x}.$