Name
 Student I.D.
 Math 2250-1
 Quiz 4
 September 16, 2011

1) Consider the following linear drag initial value problem:

$$
\begin{gathered}
\frac{d v}{d t}=4-0.1 \cdot v \\
v(0)=0 .
\end{gathered}
$$

1a) Use a phase diagram to determine the limit of the solution $v(t)$ to this problem, as $t \rightarrow \infty$.

1b) Solve the initial value problem above. (Your solution should be consistent with the correct answer to part (a) above.)

1c) Use Newton's Law to convert the following information into a differential equation initial value problem - your IVP should end up being equivalent to the IVP at the top of this page, if you keep track of your units correctly.

A small motor boat and its passenger/driver weigh a total of 640 lbs . The motor provides a thrust of 80 lbs. The drag from the boat depends on the velocity v of the boat, and is 2 lbs for each $\mathrm{ft} / \mathrm{sec}$ of velocity v. Aside from the motor and the drag forces, there are no other forces acting on the boat, and the boat starts from rest.

