Name

Student I.D.

Math 2250-1

Quiz 2 Solutions
September 2, 2011

1) Solve the following initial value problem.

$$
\begin{gather*}
x^{\prime}(t)+0.02 \cdot x(t)=1 \\
x(0)=0 \tag{7points}
\end{gather*}
$$

This differential equation is both linear and separable. You can solve it either way. Probably most people solved it as a linear $D E$:
The integrating factor is

$$
e^{\int P(t) \cdot d t}=e^{0.02 \cdot t}
$$

so:

$$
\begin{gathered}
e^{0.02 \cdot t} \cdot\left(x^{\prime}(t)+0.02 \cdot x(t)\right)=e^{0.02 \cdot t} \\
\frac{d}{d t}\left(e^{0.02 \cdot t} \cdot x(t)\right)=e^{0.02 \cdot t} \\
e^{0.02 \cdot t} \cdot x(t)=\int e^{0.02 \cdot t} \cdot d t=50 \cdot e^{0.02 \cdot t}+C \\
\text { divide } \text { by } e^{0.02 \cdot t} \Rightarrow x(t)=50+C \cdot e^{-0.02 \cdot t} \\
x(0)=0 \Rightarrow 0=50+C \Rightarrow C=-50 .
\end{gathered}
$$

Thus

$$
x(t)=50-50 \cdot e^{-0.02-t}
$$

2) A tank contains $100 l$ of water, which is initially pure. At time $t=0$ valves are opened, so that a saltwater solution flows into the tank at a rate of $2 \frac{l}{s}$, with a salt concentration of $0.5 \frac{\mathrm{~kg}}{\mathrm{l}}$; at the same time, well-mixed water begins to flow out of the tank at the same rate of $2 \frac{l}{S}$, maintaining the constant volume $100 l$ of water in the tank. Let $x(t) \mathrm{kg}$ be the mass of (dissolved) salt in the tank at time t. Use inputoutput modeling to show that $x(t)$ satisfies the initial value problem in (1).

$$
\frac{d x}{d t}=r_{i} \cdot c_{i}-r_{o} \cdot c_{o}
$$

We see that $r_{i}=r_{o}=2, c_{i}=0.5$ and $c_{o}=\frac{x}{V}=\frac{x}{100}$ so

$$
\begin{gathered}
\frac{d x}{d t}=2 \cdot(0.5)-\frac{2 \cdot x}{100}=1-0.02 \cdot x . \\
\boldsymbol{x}^{\prime}(\boldsymbol{t})+\mathbf{0 . 0 2} \cdot \boldsymbol{x}(\boldsymbol{t})=\mathbf{1} .
\end{gathered}
$$

Since there is initially no salt in the tank water, $\boldsymbol{x}(\boldsymbol{0})=\mathbf{0}$.

