Name

Student I.D.

Math 2250-1

Quiz 1 Solutions
August 26, 2011

1) Write down an initial value problem for the function $\mathrm{N}(\mathrm{t})$, as described below. Do not attempt to find the actual solution function.

In a city with a population of 10 thousand people the time rate of change of the number N of those persons infected with a certain contagious disease is proportional to the product of the number who have the disease and the number who do not. At time $t=0$ days there are 2 thousand infected people.
(4 points)
translating the underlined words into a differential equation yields

$$
\frac{d N}{d t}=k \cdot N \cdot(P-N)
$$

where $P=10,000$. The initial condition is that $P(0)=2000$. Depending on your choice of units for population you could have two equivalent IVPs:

If your population units are individual people then the IVP is

$$
\begin{gathered}
\frac{d N}{d t}=k \cdot N \cdot(10,000-N) \\
P(0)=2000
\end{gathered}
$$

If you choose to count people by the thousands, then the IVP is

$$
\begin{gathered}
\frac{d N}{d t}=k \cdot N \cdot(10-N) \\
P(0)=2 .
\end{gathered}
$$

(Both versions of the IVP are correct. Sometimes picking appropriate units makes solving differential equations computationally simpler.)
2) Find the position function $x(t)$ of a moving particle with the acceleration $a(t)=8 \cdot \sin (2 \cdot t) \frac{\text { meters }}{\sec ^{2}}$, given that its initial position is $x(0)=8$ meters and its initial velocity is $v(0)=-4 \frac{\text { meters }}{\mathrm{sec}}$.

$$
\begin{gather*}
x "(t)=8 \cdot \sin (2 \cdot t) ; \tag{6points}\\
x^{\prime}(t)=\int 8 \cdot \sin (2 \cdot t) d t=-4 \cdot \cos (2 \cdot t)+C ; \\
v_{0}=-4 \cdot \cos (0)=-4+C, \operatorname{so} C=0, \\
x \prime(t)=-4 \cdot \cos (2 \cdot t), \\
x(t)=\int-4 \cdot \cos (2 \cdot t) \mathrm{d} t=-2 \cdot \sin (2 \cdot t)+C, \\
x_{0}=8=-2 \cdot \sin (0)+C=C, \operatorname{so} C=8, \text { so } \\
x(t)=-2 \cdot \sin (2 \cdot t)+8 \quad \text { meters }
\end{gather*}
$$

