## Student I.D.

## Math 2250-1 <br> Quiz 13 SOLUTIONS <br> December 9, 2011

1) Consider the first order system of differential equations

$$
\begin{gathered}
x^{\prime}(t)=y \\
y^{\prime}(t)=-4 \sin (x)-5 y .
\end{gathered}
$$

1a) Find the equilbrium solutions.
Equilibrium solutions are constant solutions so we must simultaneously have $y=0,-4 \sin (x)-5 y=0$, which is equivalent to $y=0, \sin (x)=0$.
Thus the equilibrium solutions are $(n \pi, 0)$ where $n$ is ranges through the integers. (You might recognize this first order system as possibly arising from a damped pendulum problem.)

1b) Linearize the first order system above at the equilibrium solution $(x, y)=(0,0)$. Classify this critical point, making sure to include whether or not it is stable. (If there was more time and it was asked, could you draw a qualitatively accurate phase portrait near this point?)
(8 points)
In general if $\left(x_{e} y_{e}\right)$ is an equilibrium solution and if we write $x(t)=x_{e}+u(t), y(t)=y_{e}+v(t)$ then the linearized equation for $[u(t), v(t)]^{T}$ uses the Jacobian matrix for $[F(x, y), G(x, y)]^{T}$ :

$$
\begin{gathered}
J(x, y)=\left[\begin{array}{cc}
\frac{\partial}{\partial x} F & \frac{\partial}{\partial y} F \\
\frac{\partial}{\partial x} G & \frac{\partial}{\partial y} G
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-4 \cos (x) & -5
\end{array}\right] \\
J(0,0)=\left[\begin{array}{cc}
0 & 1 \\
-4 & -5
\end{array}\right] .
\end{gathered}
$$

So the linearized system is

$$
\begin{gathered}
{\left[\begin{array}{l}
u^{\prime}(t) \\
v^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-4 & -5
\end{array}\right]\left[\begin{array}{l}
u(t) \\
v(t)
\end{array}\right]} \\
J-\lambda I\left|=\left|\begin{array}{cc}
-\lambda & 1 \\
-4 & -5-\lambda
\end{array}\right|=\lambda(\lambda+5)+4=\lambda^{2}+5 \lambda+4=(\lambda+4)(\lambda+1)=0\right.
\end{gathered}
$$

So the eigenvalues are $\lambda=-4,-1$. Thus ( 0,0 ) is a stable (improper) node, aka nodal sink. Could you could find the eigenbasis for the Jacobian matrix, the general solution to the linearized problem, and could you sketch a qualitatively accurate phase portrait for the linearized system?

