Name_

Student I.D._____

Math 2250–1 Quiz 11 Solutions November 23, 2011

1a) Find the general solution $[x(t), y(t)]^T$ to the homogeneous system of differential equations

x'(t) = -4x + 2y y'(t) = 4x - 2y.(6 points) $\begin{bmatrix} x'(t) \\ y'(t) \end{bmatrix} = \begin{bmatrix} -4 & 2 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$ $\begin{bmatrix} -4 - \lambda & 2 \\ 4 & -2 - \lambda \end{bmatrix} = (\lambda + 2) (\lambda + 4) - 8 = \lambda^{2} + 6\lambda + 8 - 8 = \lambda(\lambda + 6)$

So the eigenvalues are $\lambda = 0$, $\lambda = -6$. Eigenvector for $\lambda = 0$:

-4	2	0
4	-2	0

Since $col_1 + 2 col_2 = 0$, $\underline{v} = [1, 2]^T$ is an eigenvector. Eigenvector for $\lambda = -6$:

$$\begin{bmatrix} 2 & 2 & 0 \\ 4 & 4 & 0 \end{bmatrix}$$

 $\underline{\mathbf{v}} = \left[1, -1\right]^T.$

Thus the general solution to the homogeneous first order linear systems of DE's is

$\begin{bmatrix} y(t) \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix} 2 \begin{bmatrix} -1 \end{bmatrix}$	х у	c(t) v(t)	$=c_1$	1 2	$+c_2 e^{-6t}$	1 -1	
--	--------	--------------	--------	--------	----------------	---------	--

1b) Consider two tanks. Tank one contains 50 gallons of water, and tank two contains 100 gallons of water. Water flows from tank 1 to tank 2 through a one pipe, and from tank 2 back to tank 1 through another pipe. The flow rate in both pipes is 200 gallons per hour. There are no other inlet or outlet pipes. After some initial allocation of solute $x(0) = x_0$ to tank 1 and $y(0) = y_0$ to tank 2, let x(t) and y(t) denote

the salt amounts for t > 0. Assume the water in each tank is well-mixed so that salt concentrations can be treated as uniform in each tank. Use this information and input-output analysis to derive the first order system of differential equations for x(t) and y(t). (Your answer is the system in part (a).)

(4 points)

$$\begin{aligned} x'(t) &= r_i c_i - r_o c_o = 200 \frac{y}{100} - 200 \frac{x}{50} = -4 x + 2 y\\ y'(t) &= r_i c_i - r_o c_o = 200 \frac{x}{50} - 200 \frac{y}{100} = 4 x - 2 y. \end{aligned}$$

(and the initial conditions are $x(0) = x_0, y(0) = y_0$.)