Student I.D.

Math 2250-1

Quiz 11 Solutions

November 23, 2011

1a) Find the general solution $[x(t), y(t)]^{T}$ to the homogeneous system of differential equations

$$
x^{\prime}(t)=-4 x+2 y
$$

$$
y^{\prime}(t)=4 x-2 y
$$

(6 points)

$$
\left[\begin{array}{cc}
-4-\lambda & 2 \\
4 & -2-\lambda
\end{array}\right]=(\lambda+2)(\lambda+4)-8=\lambda^{2}+6 \lambda+8-8=\lambda(\lambda+6)
$$

$$
\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{rr}
-4 & 2 \\
4 & -2
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
$$

So the eigenvalues are $\lambda=0, \lambda=-6$.
Eigenvector for $\lambda=0$:

$$
\left[\begin{array}{rr|r}
-4 & 2 & 0 \\
4 & -2 & 0
\end{array}\right]
$$

Since $\operatorname{col}_{1}+2 \operatorname{col}_{2}=0, \underline{\boldsymbol{v}}=[1,2]^{T}$ is an eigenvector.
Eigenvector for $\lambda=-6$:

$$
\left[\begin{array}{ll|l}
2 & 2 & 0 \\
4 & 4 & 0
\end{array}\right]
$$

$\underline{\boldsymbol{v}}=[1,-1]^{T}$.
Thus the general solution to the homogeneous first order linear systems of DE's is

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+c_{2} e^{-6 t}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] .
$$

1b) Consider two tanks. Tank one contains 50 gallons of water, and tank two contains 100 gallons of water. Water flows from tank 1 to tank 2 through a one pipe, and from tank 2 back to tank 1 through another pipe. The flow rate in both pipes is 200 gallons per hour. There are no other inlet or outlet pipes. After some initial allocation of solute $x(0)=x_{0}$ to tank 1 and $y(0)=y_{0}$ to tank 2, let $x(t)$ and $y(t)$ denote the salt amounts for $t>0$. Assume the water in each tank is well-mixed so that salt concentrations can be treated as uniform in each tank. Use this information and input-output analysis to derive the first order system of differential equations for $x(t)$ and $y(t)$. (Your answer is the system in part (a).)
(4 points)

$$
\begin{aligned}
& x^{\prime}(t)=r_{i} c_{i}-r_{o} c_{o}=200 \frac{y}{100}-200 \frac{x}{50}=-4 x+2 y \\
& y^{\prime}(t)=r_{i} c_{i}-r_{o} c_{o}=200 \frac{x}{50}-200 \frac{y}{100}=4 x-2 y .
\end{aligned}
$$

(and the initial conditions are $x(0)=x_{0}, y(0)=y_{0}$. .

