Student I.D.

Math 2250-1
 Quiz 10 solutions
 November 18, 2011

1) Consider the matrix

$$
A=\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right]
$$

1a) Find the eigenvalues of A, and corresponding eigenvectors.
(8 points)

$$
|A-\lambda \cdot I|=\left|\begin{array}{cc}
1-\lambda & 2 \\
4 & 3-\lambda
\end{array}\right|=(\lambda-1)(\lambda-3)-8=\lambda^{2}-4 \lambda-5=(\lambda-5) \cdot(\lambda+1)
$$

so the eigenvalues are 5, -1 .
$\lambda=-1:$

$$
\left[\begin{array}{ll|l}
2 & 2 & 0 \\
4 & 4 & 0
\end{array}\right]
$$

Since $-1 \cdot \operatorname{col}_{1}+1 \cdot \operatorname{col}_{2}=0$, we deduce that $\underline{\boldsymbol{v}}=[-1,1]^{T}$ is an eigenvector.
$\lambda=5:$

$$
\left[\begin{array}{rr|r}
-4 & 2 & 0 \\
4 & -2 & 0
\end{array}\right]
$$

Since $\operatorname{col}_{1}+2 \cdot \operatorname{col}_{2}=0$ we deduce that $\underline{\boldsymbol{v}}=[1,2]^{T}$ is an eigenvector.

1b) Is the matrix A diagonalizable? Explain.

Yes. Any of the following explanations suffice:
i) The two eigenvectors above are a basis for R^{2}.
ii) For the two eigenvectors above, put into the columns of the invertible matrix P we have $A P=P D$ where D is the diagonal matrix of corresponding eigenvalues:

$$
\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right]\left[\begin{array}{rr}
-1 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{rr}
-1 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{rr}
-1 & 0 \\
0 & 5
\end{array}\right]
$$

iii) Any n by n matrix with n distinct eigenvalues is automatically diagonalizable, because the n corresponding eigenvectors are automatically linear independent and hence a basis for R^{n}.

