Math 2250-1
Week 12 concepts and homework, due November 18.
Recall that problems which are underlined are good for seeing if you can work with the underlying concepts; that the underlined problems are to be handed in; and that the Friday quiz will be drawn from all of these concepts and from these or related problems.
10.4: using convolution integrals to find inverse Laplace of $F(s) G(s)$; using the differentiation theorem to find the Laplace transform of $t \cdot f(t)$; using these (and other) techniques to solve linear differential equations.
10.4: $\underline{\mathbf{2}}, 3,9, \underline{\mathbf{1 0}}, 15, \underline{\mathbf{1 6}}, 29, \underline{\mathbf{3 0}}, 37, \underline{\mathbf{3 8}}$
10.5: using the unit step function to turn forcing on and off; Laplace transform of non-sinusoidal periodic functions
10.5: $3,7,11,13,25,31, \underline{\mathbf{2 6}}, \underline{\mathbf{3 4}}$
w12.1) Solve this initial value problem and then sketch the solution. Explain what happens. The forcing term is a sum of instananeous unit impulses, as discussed in EP7.6 and Monday's class notes.

$$
\begin{aligned}
x^{\prime \prime}(t)+4 x(t)=\delta(t & -\pi)-\delta(t-3 \pi) . \\
x(0) & =0 \\
x^{\prime}(0) & =0
\end{aligned}
$$

6.1: finding eigenvalues and eigenvectors (or a basis for the eigenspace if the eigenspace is more than one-dimensional).

$6.1: 7, \underline{\mathbf{8}}, 17, \underline{\mathbf{1 8}}, \underline{\mathbf{2 0}} \underline{\mathbf{2 4}}$

6.2: diagonalizability: recognizing matrices for which there is an eigenbasis, and those for which there is not one. Writing the eigenbasis equation as $A P=P D$ where P is the matrix of eigenvector columns, and D is the diagonal matrix of eigenvalues.
6.2: $\underline{\mathbf{4}}, \underline{\mathbf{1 0}}, \underline{\mathbf{8}}$ In $4,10,28$, make sure to verify that $A P=P D$ in the cases that A is diagonalizable.

w12.2)

a) Using your work in 6.1.20, verify that $A P=P D$ for the matrix A in that problem.
b) Explain what happens if you re-order the eigenvector columns of P, and why.

