nath 2250-1

FINAL EXAM
December 16, 2011

This exam is closed-book and closed-note. You may usea <cientific calculator, but not one which is
capable of graphing or of solving differential or linear algebra equations. Laplace Transform tables are
included with this exam. In order to receive full or partial credit on any problem, you must show all
of your work and justify your conclusions. This exam counts for 30% of your course grade. it has
been written so that there are 150 points possible, and the point values for each problem are indicated in

the right-hand margin. Good Luck!

problem score  possibie
1 e 30
2 35
3 i5
4 20
5 o 25
6 o 25

total 150



13 A motorboal containing the pilot has 0ial mass ﬁ%@ kilggrams, and 1ts Mmoo 18 able I gz‘m@M

Newtons of thrust, Howevern, when the boat is in motior drag from the water produces a foree of
: . e
newtons for sach meter/sec of boat velocny.
ihabtitin

1a) Use Newton's law to explain why (while the motor is on) the boat velocity v{¢) satisfies the

differential equation
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1b) What is the equilibrium solution for the velocity v(1)? Is this solution stable or unstable? Explain with

a phase diagram.
(5 points)
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1¢) Solve the initial value problem for the boat's velocity, assuming the boat starts at rest, 1e.
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tial equation like this one. Use two of

ve learned four methods for solving a differen
hich two are to be graded.

As it turns out, we'
your favorites! 1f you try more than two ways indicate clearly w
(20 points}
i%%' @ifgig& %fW ‘&—gZMa.i i@
;o 1 .
vy L ve 4 vuwifgéi%f i)
Yo i
z ! Yo v v’ =-.025 {v-1p)
8@9 vk 5%‘? = g é 1+
i’f \%j .,% dv . -~ 025 :}\t’
4o { g Gp N0 v 10
VIR O T 2 A NPT
R . /@if\%yﬂg 1
Ao o -0t
-% i3
v o+ Ce /o S o v L&
= LoD
vieYyro = C T e

viptzg = C=-10

v =10 ~10 ¢ /40

Loplae

meg v o bineon -
v’;.}, ,o‘g_gvﬂ-:.,i% \,/'/@-em—%v;azg :
, L2
: Vi) - c.oozsV/s) = T
X) s /{y (SN

VIV RV VT -025¢T 25
? ? ,:._f? [ =i ’\Jf{é) Eg %- GZ%} - /:‘}% .2—%
Vg—;ﬁ‘sg, ’g /yg %
Y
V- ?{M‘: v i.005. \/iﬁ =
H ¢ (g4 .018)
y oo - 015
v 1= ¢, e 0 S B I B g
015t < gy.028 | O%5
ve101 ce
= {0 [—}?— - }
v(e1T0 T GEID Xg S st.as
- 015 ¥ ©ov(sy T o - oe 0P’

tad

vz io-loe



2y Consider the following nitial value problem, which could arise from MNewton's second law in a forced
mass-spring oscillation problem:

2a) 1f the applied force in this problem is 52 &, then what are the Hooke's constant, mass, and damping
cocfficient? Include correct units.
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7by Solve this initial problem using the methods of Chap?ér ?jbased on particular and homogeneous

solutions.
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ansform t@cmiqa@ﬁ o re ss%xa é‘%s 5 BITIE ﬁ“ﬁzuaé ‘mhs problem

Z¢) Use Laplace I
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3} Consider the matrix
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3a) Find the characteristic polynomial and factor it to find the eigenvalues of 4. (Hint, the eigenvalues you

get should be = 0,-4,~ 5 ; vour job is 1o derive these values.}
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3b) An eigenvector for A= 0is givenby &= [6,1,3 ]T , and an eigenvector forA=-4
v=[-2,-1, B]T _ Find an eigenvector for A =-3.
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4y Consider the following three-tank configuration. In tank one there is uniformly mixed volume of 60
galions pf water, and x, {+ipounds of salt solute. In tank two there is mixed volume of 10 gailons and

x, (7} pounds of salt. In tank three there is 30 gallons of liguid and x; (1) pounds of salt. Vater is pumped
slowly from tank one 1o tank two, from tank two 0 tank three, and from tank three back 1o tank one, and
ail rates are 60 gallons per hour,

4a) Model this input-output model, to arrive at the first order system of differential equations
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4b) Use your work from problem (3), in which you found an R basis of cigenvectors for the matrix in
the 4a system of differential equations, to find the general solution.
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4¢) Based on your solution to 4b, and assuming there is a pOsitive amount of salt in the system at time
¢ = 0, what happens to the relative salt amounts in each tank as 1 approaches infinity? Why does your
answer make sense €ven without referring to the solution in 4b7
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53} Consider a sreain of two cars of masses w1,

#i, connected by spring with Hooke's constant & as
indicated in the diagram below. Assuming no friction and no exter nal
differential equations for the di

forces, derive the system of two
splacements x, (7}, %, {7 } of the two cars from equilibrium.
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5b) If the Hooke's constant for the spring connecting the two cars is k= 3000 — , then determine the
m
nasses of the twao cars o that the differential equations above reduce 10
x, (1) = -3x, T 3%,
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5¢) Find the general solution to the system in (3b), repeated below for your conven ience:

{10 points)
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5d) Solve the initial value problem for the system of differential equations above, with

x (0} =

x,"(0) =8
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x, (0)=0

and describe the resulting motion of the two cars as a superposition of motions rel

ated to two "fundamental
modes" (in this problem one of the modes isn't actually vibrating).
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i oscillati in O r exarmple, we studied
\ We studied various non-inear mechanical oscillation problems 1 LNapier 9. ?’.{} ixaiph e
pri [ i i i i i I as e
O e finear mass-spring models. Here 15 an inieresting one, in which the spring 107 ;. e
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opposite sign from ] ¢ ;
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Here's a phase portrail for this system:
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6a) It's relatively straightforward to find the three equilibrium solutions. Theg arle_((), 0),(-3,0), (3,0)
‘S)se the Jacobian matrix to classify these equilbria, as much as is possible. EXpiain.
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6b) Find the sounon ful{f),vir} 1 © the linearized system at the equilibrium point {0,0). Useths
solution {and the relevant eigenvalues and eigenvectors} to sketch a qualitatively accurate piciure of whet

the phase portrait 1o both the linearized and the original non-linear sysiem of differential equations looks

like near the origin. (Of course, your skeich should be consistent with the pplane picture on the previous
page, but should inciude more refevant details.}
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6¢) This problem is an example of one in which one can use a conserved "total energy" function to + 4,
understand stability questions and solution trajectories. Use separation of variables or some other method

to find a function of x, ¥ which is constant for every solution [x(1), ¥{1) ]T to the original system. What
are the implications of this computation for the stability of the critical points { £ 3, 0)?
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Table of Laplace Transiorms

This table summarizes the general properties of Laplace wransforms and the Laplace ransforms of parucular functions

derived in Chapter 10

fi)
af{e) + bgli)
Frind
i
F7)
f flryde
o
e f{1)
ult —ajfi—al
E flryglt —1)dr
tf {1}

IS Aty

rw

!

f(2), period p

w -,
Fo= §eStgoat

aF sy -+ bGin
SF{s)— f(0)
SPF(sy—sf(0) — 11Oy

SUFLs) — s A — - — iy

Fisy
£

Fis —a)
e (5}
Fis)G{s)
~F'{s)

(~ 1Y F(s)

[ Flo)do

i F-—jl d
T ] o

Si'f‘H

7
Pia + 1)
Sﬂ'i‘l

f"éc”

coskt

Sinkr

coshks

sinh kv

e cos ki

2% sin kt
[

é}g(smkf -~ ki coskr)
- kr

— 5

2% "

} {sinkr + krcosk ‘A

- {§10 K Fi

5 cos ki)

ul{r — a)

87 —a)

{_g)iz/a} {sqquare wave)

E[—f—jﬂ {staircase)
a

&
(s —a)r +k?
i
(s? 4 k*)?
8
(s2 + k)7

52

(s +k7)?

s(1 — e795)




